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Abstract. The Banach sequence spaces ces(p) are generated in a speci�ed
way via the classical spaces ℓp, 1 < p < ∞. For each pair 1 < p, q < ∞ the
(p, q)-multiplier operators from ces(p) into ces(q) are known. We determine
precisely which of these multipliers is a compact operator. Moreover, for
the case of p = q a complete description is presented of those (p, p)-multiplier
operators which are mean (resp. uniform mean) ergodic. A study is also made
of the linear operator C which maps a numerical sequence to the sequence of
its averages. All pairs 1 < p, q < ∞ are identi�ed for which C maps ces(p)
into ces(q) and, amongst this collection, those which are compact. For p = q,
the mean ergodic properties of C are also treated.

1. Introduction.

For each element x = (xn)n = (x1, x2, . . .) of CN let |x| := (|xn|)n and write
x ≥ 0 if x = |x|. Of course, x ≤ y means that (y − x) ≥ 0. The Cesàro operator
C : CN −→ CN, de�ned by

C(x) := (x1,
x1 + x2

2
,
x1 + x2 + x3

3
, ...), x ∈ CN,

satis�es |C(x)| ≤ C(|x|) for x ∈ CN and is a vector space isomorphism of CN onto
itself. It is also a topological isomorphism when CN is considered as a (locally
convex) Fréchet space with respect to the coordinatewise convergence. For each
1 < p < ∞ de�ne

ces(p) :=
{
x ∈ CN : ∥x∥ces(p) := ∥( 1

n

n∑
k=1

|xk|)n∥p = ∥C(|x|)∥p < ∞
}
, (1.1)

where ∥ · ∥p denotes the standard norm in ℓp. An intensive study of the Banach
spaces ces(p), 1 < p < ∞, was undertaken in [3]; see also the references therein.
In particular, they are re�exive, p-concave Banach lattices (for the order induced
by CN) and the canonical vectors ek := (δnk)n, for k ∈ N, form an unconditional
basis, [3], [6]. For any pair 1 < p, q < ∞ the space ces(p) is known not to be
isomorphic to ℓq, [3, Proposition 15.13]. It is shown in Proposition 3.3 (for all
p ̸= q) that ces(p) is also not isomorphic to ces(q). It is important to note that
the inequality

Ap

k1/p′
≤ ∥ek∥ces(p) ≤

Bp

k1/p′
, k ∈ N, (1.2)
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is valid for strictly positive constants Ap, Bp and with 1
p +

1
p′ = 1, [3, Lemma 4.7].

It is known, [3, p.26], that ces(p) = cop(p) with equivalent norms, where

cop(p) :=
{
x ∈ CN : ∥x∥cop(p) := ∥(

∞∑
k=n

|xk|
k

)n∥p < ∞
}
, 1 < p < ∞.

The dual Banach spaces (ces(p))′, 1 < p < ∞, are described in Section 12 of
[3]. Yet another equivalent norm in ces(p), via the dyadic decomposition of N, is
available, [11, Theorem 4.1]. Namely, x ∈ CN belongs to ces(p) if and only if

∥x∥[p] :=
( ∞∑

j=0

2j(1−p)
( 2j+1−1∑

k=2j

|xk|
)p)1/p

< ∞. (1.3)

The spaces ces(p), 1 < p < ∞, also arise in a very di�erent way. Fix 1 < p < ∞.
Since the Cesàro operator Cp,p : ℓp −→ ℓp, i.e., C restricted to ℓp, is a positive

operator between Banach lattices, it is natural to look for continuous ℓp-valued
extensions of Cp,p to Banach lattices X ⊆ CN which are larger than ℓp and solid

(i.e., y ∈ CN and |y| ≤ |x| with x ∈ X implies that y ∈ X). The largest of all
those solid Banach lattices in CN for which such a continuous, ℓp-valued extension
of Cp,p : ℓp −→ ℓp is possible is precisely ces(p), [6, p.62]. Of course, this "largest
extension" Cc(p),p : ces(p) −→ ℓp is the restriction of C from CN to ces(p).
Somewhat surprisingly, Cc(p),p also possesses an integral representation. That is,

ces(p) coincides with the L1-space of an ℓp-valued vector measure mp and Cc(p),p

is given by

Cc(p),p(x) =

∫
N
x(n) dmp(n), x ∈ L1(mp) = ces(p).

Here mp : R −→ ℓp is the σ-additive vector measure de�ned on the δ-ring R of
all �nite subsets of N by

mp(A) := Cp,p(χA), A ∈ R, (1.4)

where χA : N −→ C is the element of CN given by χA =
∑

k∈A ek for each A ⊆ N.
This claim certainly requires a proof. First, the space L1(mp) of all mp-integrable
functions on N, as de�ned in [8], [9], is the optimal domain for the operator
Cp,p (in the sense of [9, Corollaries 2.4 and 2.6]) within the class of all Banach
function spaces (brie�y, B.f.s) over (N,R, µ) which have absolutely continuous

norm (brie�y, a.c.); here µ denotes counting measure. More precisely, L1(mp) ⊆
CN contains the domain space ℓp of Cp,p, the integration map Imp : L1(mp) −→ ℓp
(given by x 7−→

∫
N x dmp for x ∈ L1(mp)) satis�es Imp(x) = Cp,p(x) for each

x ∈ ℓp ⊆ L1(mp), and L1(mp) is the largest of all B.f.s.' over (N,R, µ) having
a.c.-norm to which Cp,p can be extended while still maintaining its values in ℓp.
To verify this, we observe that an equivalent norm in L1(mp) is given by

∥|x∥|L1(mp) := sup
{∥∥∥∥∫

A
x dmp

∥∥∥∥
p

: A ∈ R
}
, x ∈ L1(mp);

see (3) on p.434 of [8]. But, for x ∈ L1(mp) and each A ∈ R, the function xχA

is an R-simple function and so it follows from (1.4) that
∫
A x dmp = Cp,p(xχA).
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Now, for x ∈ ces(p) �xed, note that∥∥∥ ∫
A
x dmp

∥∥∥
p
= ∥Cp,p(xχA)∥p = ∥Cc(p),p(xχA)∥p ≤ ∥Cc(p),p(|x|)∥p = ∥x∥ces(p) < ∞

for every A ∈ R. If we de�ne
∫
A x dmp := Cc(p),p(xχA) ∈ ℓp for an arbitrary

subset A ⊆ N, then x is mp-integrable in the sense of [8, p.434], [9, p.133],
with ∥|x∥|L1(mp) ≤ ∥x∥ces(p). Since ces(p) itself is a B.f.s. over (N,R, µ) having

an a.c.-norm and containing ℓp, we can conclude from the optimality of L1(mp)
that ces(p) ⊆ L1(mp) with a continuous inclusion. On the other hand, recall that
ces(p) is the largest solid Banach lattice in CN which contains ℓp and C maps into
ℓp. But, the B.f.s. L1(mp) is such a solid Banach lattice which C maps into ℓp.
Indeed, since L1(mp) ⊆ CN with ℓp dense in L1(mp) (as ℓp contains the R-simple
functions which are known to be dense in L1(mp), [8, p.434]) and C acts in all of
CN, it follows from the fact that norm convergence of a sequence in L1(mp) implies
the pointwise convergence µ-a.e. of a subsequence, [9, p.134] (in this case meaning
coordinatewise convergence in CN), that the extended operator Imp is necessarily

given by Imp(x) = C(x) for all x ∈ L1(mp). Accordingly L1(mp) ⊆ ces(p) and

hence, L1(mp) = ces(p) with equivalence of the norms ∥| · ∥|L1(mp) and ∥ · ∥ces(p).
It is an important feature that mp cannot be extended to a more traditional
σ-additive, ℓp-valued vector measure de�ned on the σ-algebra 2N generated by
R. This is because its range mp(R) is an unbounded subset of ℓp. Indeed, for

An := {1, 2, ..., N} ∈ R we have mp(AN ) =
∑N

j=1 ej +N
∑∞

j=N+1
1
j ej and hence,

∥mp(AN )∥p ≥ N1/p for all N ∈ N.
Having presented several equivalent and varied descriptions of the spaces ces(p),

1 < p < ∞, we now formulate the aim of this note, namely to make a detailed
analysis of certain linear operators de�ned on these spaces. Let us be more pre-
cise.

Given a pair 1 < p, q < ∞, an element a ∈ CN is called a (p, q)-multiplier if it
multiplies ces(p) into ces(q), that is, if ax ∈ ces(q) for every x ∈ ces(p), where
the product ax := (anxn)n is de�ned coordinatewise. The closed graph theorem
ensures that the corresponding linear (p, q)-multiplier operator Ma

p,q : x 7−→ ax
is then necessarily continuous from ces(p) into ces(q). If p = q, then we denote
Ma

p,p simply by Ma
p and note that Ma

p is the diagonal operator acting in ces(p)
via the matrix having the scalars {an : n ∈ N} in its diagonal. The vector space
of all (p, q)-multipliers, denoted by Mp,q (or Mp if p = q), has been completely
determined by G. Bennett; see [3, pp.69-70], after recalling that cop(p) = ces(p)
for all 1 < p < ∞.

In Section 2 we investigate various properties of the multiplier operators Ma
p,q

for all pairs 1 < p, q < ∞ and a ∈ Mp,q. For instance, those multipliers a ∈ Mp,q

for which Ma
p,q is a compact operator are characterized; see Propositions 2.2 and

2.5. Also, given a ∈ Mp = ℓ∞ it is shown that the spectrum of Ma
p is the set

σ(Ma
p ) = a(N), 1 < p < ∞,

where a(N) := {an : n ∈ N} ⊆ C, and that ∥Ma
p ∥op = ∥a∥∞ with ∥ · ∥op denoting

the operator norm of Ma
p : ces(p) −→ ces(p); see Lemma 2.6 and Proposition

2.7. Furthermore, those a ∈ Mp are identi�ed for which the operator Ma
p is mean
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ergodic (cf. Proposition 2.8) as well as those for which Ma
p is uniformly mean

ergodic (cf. Proposition 2.10).
It is clear from (1.1) and the discussions above that the Cesàro operator C is

intimately connected to the Banach spaces ces(p), 1 < p < ∞. Indeed, Hardy's
classical inequality states, for 1 < p < ∞, that

∞∑
n=1

( 1

n

n∑
k=1

bk

)p
≤ Kp

∞∑
n=1

bpn

for all choices of non-negative numbers {bn}∞n=1 and some constant Kp > 0, [12].
Setting bn := |xn|, for n ∈ N and each x ∈ ℓp, it is immediate that ∥Cp,p(|x|)∥p ≤
K

1/p
p ∥x∥p, that is, ℓp ⊆ ces(p) with a continuous inclusion; Remark 2.2 of [6]

shows that this containment is strict. Moreover, the Cesàro operator Cc(p),p :
ces(p) −→ ℓp is continuous; this was already implicitly used above. To see this
�x x ∈ ces(p). Using the fact that ∥ · ∥p is a Banach lattice norm yields

∥Cc(p),p(x)∥p = ∥ |C(x)| ∥p ≤ ∥C(|x|)∥p = ∥x∥ces(p).

The connection between C and ces(p) is further exempli�ed by the following
remarkable result of Bennett, [3, Theorem 20.31].

Proposition 1.1. Let 1 < p < ∞ and x ∈ CN. Then

x ∈ ces(p) if and only if C(|x|) ∈ ces(p). (1.5)

Further examples of Banach spaces X ⊆ CN such that C(X) ⊆ X and for which
Proposition 1.1 is valid (with X in place of ces(p)) are identi�ed in [5], [6], [7].

In Section 3 it is shown that C maps ces(p) into ces(q), necessarily continuously,
if and only if 1 < p ≤ q < ∞; see Proposition 3.5. Furthermore, all pairs

1 < p, q < ∞ are identi�ed for which C maps ℓp into ces(q) and for which C
maps ces(p) into ℓq, as well as the subclass of these continuous operators which
are actually compact. Two important facts in this regard are that the Cesàro
operator Cc(p),c(p) : ces(p) −→ ces(p) has spectrum

σ(Cc(p),c(p)) = {λ ∈ C : |λ− p′

2 | ≤
p′

2 }, 1 < p < ∞, (1.6)

[6, Theorem 5.1], and that the natural inclusion map ces(p) ↪→ ces(q) is compact
whenever 1 < p < q; see Proposition 3.4. A consequence of (1.6) is that Cc(p),c(p)

and Cp,p are never mean ergodic.

2. Multiplier operators from ces(p) into ces(q).

According to table 16 on p.69 of [3], given 1 < p ≤ q < ∞ an element a =

(an)n ∈ CN belongs to Mp,q if and only if the element (ann
1
q
− 1

p )n ∈ ℓ∞. Observe
that (1q − 1

p) ≤ 0. In particular, ℓ∞ ⊆ Mp,q and, if p = q, then Mp = ℓ∞. For

�xed a ∈ ℓ∞, it follows via the inequality C(|au|) ≤ ∥a∥∞C(|u|), for u ∈ CN,
that ∥Ma

p (x)∥ces(p) = ∥C(|ax|)∥p ≤ ∥a∥∞∥C(|x|)∥p = ∥a∥∞∥x∥ces(p), for all x ∈
ces(p). Hence, Ma

p : ces(p) −→ ces(p) satis�es

∥Ma
p ∥op ≤ ∥a∥∞, a ∈ ℓ∞, 1 < p < ∞. (2.1)

Here ∥.∥op denotes the operator norm. We begin with a result which is prob-
ably known; due to the lack of a reference we include a proof. Let φ be the
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vector subspace of CN consisting of all elements with only �nitely many non-zero
coordinates.

Lemma 2.1. Let T : CN −→ CN be a continuous linear operator and X,Y be a

Banach sequence spaces satisfying φ ⊆ X ⊂ CN and φ ⊆ Y ⊆ CN with continuous

inclusions such that T (X) ⊆ Y. Then the restriction T : X −→ Y is a compact

operator if and only if it satis�es the following property (K), namely:

(K) If a norm bounded sequence {xm}∞m=1 ⊆ X satis�es limm→∞ xm = 0 in

the Fréchet space CN, then limm→∞ T (xm) = 0 in the Banach space Y.

Proof. By the closed graph theorem T : X −→ Y is continuous.
Suppose �rst that T : X −→ Y is compact. Let {xm}∞m=1 ⊆ X be any sequence

in X satisfying limm→∞ xm = 0 in CN. Assume that the sequence {T (xm)}∞m=1

does not converge to 0 in Y. Select a subsequence {xmk
}∞k=1 of {xm}∞m=1 and

r > 0 such that

∥T (xmk
)∥Y ≥ r, k ∈ N. (2.2)

By compactness of T there exists y ∈ Y and a subsequence {xmk(l)
}∞l=1 of {xmk

}∞k=1

such that liml→∞ ∥T (xmk(l)
)− y∥Y = 0. Continuity of the inclusion Y ⊆ CN im-

plies that also liml→∞ T (xmk(l)
) = y in CN. But, liml→∞ xmk(l)

= 0 in CN and

T : CN −→ CN is continuous. Accordingly, liml→∞ T (xmk(l)
) = 0 in CN and so

y = 0; contradiction to (2.2). Hence, necessarily T (xm) −→ 0 in Y for m −→ ∞.
This establishes that T has property (K).

Conversely, suppose that T has property (K). Let {xi}∞i=1 be any bounded
sequence in X. To show that T is compact we need to argue that {T (xi)}∞i=1

has a convergent subsequence in Y. Since the inclusion X ⊆ CN is continuous,
the sequence {xi}∞i=1 is also bounded in the Fréchet-Montel space CN. Hence,
there is a subsequence uj := xij , for j ∈ N, of {xi}∞i=1 and x ∈ CN such that

limj→∞ uj = x in CN. Suppose that {T (uj)}∞j=1 is not convergent in Y. Then

{T (uj)}∞j=1 cannot be a Cauchy sequence in Y and hence, there exists a > 0
such that, for every j ∈ N, there exist kj , lj ∈ N with j < kj < lj such that
∥T (ukj ) − T (ulj )∥Y ≥ a. Via this inequality we can choose for j = 1 natural
numbers 1 < k1 < l1, then for j := 1+ l1 natural numbers 1+ l1 < k2 < l2 and so
on, such that 1 < k1 < l1 < k2 < l2 < k3 < l3 . . . and, for these natural numbers
{kn, ln}∞n=1, we have

∥T (ukn)− T (uln)∥Y ≥ a, n ∈ N. (2.3)

Then zn := ukn−uln , for n ∈ N, is a bounded sequence in X. Since limj→∞ uj = x
in CN, it follows that limn→∞ zn = 0 in CN. By property (K), limn→∞ T (zn) =
0 in Y, that is, limn→∞(T (ukn) − T (uln)) = 0 in Y which contradicts (2.3).
Hence, {T (uj)}∞j=1 does converge in Y and is a subsequence of {T (xi)}∞i=1. The
compactness of T is thereby veri�ed. �
Proposition 2.2. Let 1 < p ≤ q < ∞ and a ∈ Mp,q. Then the continuous

multiplier operator Ma
p,q : ces(p) −→ ces(q) is compact if and only if (ann

1
q
− 1

p )n ∈
c0.

Proof. Suppose �rst that w = (wn)n := (ann
1
q
− 1

p )n ∈ c0. De�ne the element
wN := (w1, . . . , wN , 0, 0, . . .) for each N ∈ N in which case (w − wN ) ∈ ℓ∞. So,
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by (2.1), ∥Mw
p −MwN

p ∥op = ∥Mw−wN
p ∥op ≤ ∥w − wN∥∞. Since w ∈ c0, it follows

that limN→∞ ∥w − wN∥∞ = 0 and hence, Mw
p : ces(p) −→ ces(p) is compact as

each MwN
p , for N ∈ N, is a �nite rank operator. De�ne vn := n

1
p
− 1

q , for n ∈ N, in
which case v := (vn)n ∈ Mp,q by Bennett's multiplier criterion mentioned above,
that is, Mv

p,q : ces(p) −→ ces(q) is continuous. Since Ma
p,q = Mv

p,qM
w
p , it follows

that Ma
p,q is compact.

Conversely, suppose that Ma
p,q is a compact operator. According to (1.2), the

sequence fj := j1/p
′
ej , for j ∈ N, is bounded in ces(p). Clearly {fj}∞j=1 converges

to 0 in the Fréchet space CN. Moreover, Ma
p,q(fj) = j1/p

′
ajej , for j ∈ N, and

Ma
p,q(fj) −→ 0 in CN for j −→ ∞ (as the multiplier operator Ma : CN −→ CN

given by x 7−→ ax is continuous). Applying Lemma 2.1 to the setting X :=
ces(p), Y := ces(q) and the continuous multiplier operator T = Ma : CN −→ CN

(whose restriction to X is Ma
p,q), it follows that {Ma

p,q(fj)}∞j=1 actually converges

to 0 in ces(q), that is, limj→∞ j1/p
′ |aj | · ∥ej∥ces(q) = limj→∞ ∥j1/p′ajej∥ces(q) = 0.

On the other hand, (1.2) implies that Aq ≤ j1/p
′∥ej∥ces(q) ≤ Bq for j ∈ N. It

follows that limj→∞ j1/p
′ |aj |/j1/q

′
= 0. Since 1

p′ −
1
q′ = 1

q − 1
p we can conclude

that (ann
1
q
− 1

p )n ∈ c0. �

For the case when p = q and a ∈ Mp = ℓ∞, Proposition 2.2 implies that the
multiplier operator Mp

a : ces(p) −→ ces(p) is compact if and only if a ∈ c0.
To treat the cases when p > q we recall, for each r > 1, the Banach space

d(r) := {x ∈ CN : ∥x∥d(r) := ∥x̂∥r < ∞},

where x̂ = (x̂n)n := (supk≥n |xk|)n and ∥x̂∥r is its norm in ℓr, [3, pp.3-4].

Lemma 2.3. Let 1 < r < ∞ and x ∈ d(r). Then limN→∞ ∥x − x(N)∥d(r) = 0,

where x(N) := (x1, . . . , xN , 0, 0, . . .) for each N ∈ N.

Proof. GivenN ∈ N observe that x−x(N) = (0, . . . , 0, xN+1, xN+2, . . .) and hence,

(x−x(N))̂ = (x̂N+1, . . . , x̂N+1, x̂N+2, . . .) where the �rst (N+1)-coordinates are
constantly x̂N+1. It follows that

∥x− x(N)∥rd(r) = (N + 1)(x̂N+1)
r +

∞∑
n=N+2

(x̂n)
r, N ∈ N. (2.4)

Since ((x̂n)
r)n is a decreasing sequence of non-negative terms which belongs to ℓ1,

it is classical that limn→∞ n(x̂n)
r = 0, [14, � 3.3 Theorem 1]. Let ϵ > 0. Choose

K ∈ N such that n(x̂n)
r < ϵr

2 and
∑∞

n=K(x̂n)
r < ϵr

2 for all n ≥ K. It follows from

(2.4) that ∥x− x(N)∥rd(r) < ϵr for all N ≥ K. The proof is thereby complete. �

Let 1 < q < p < ∞ and choose r according to 1
r = 1

q −
1
p . Then it follows from

table 32 on p.70 of [3] that

Mp,q = d(r). (2.5)

Lemma 2.4. Let 1 < q < p < ∞ and r satisfy 1
r = 1

q − 1
p . Then there exists a

constant Dp,q > 0 such that

∥Ma
p,q∥op ≤ Dp,q∥a∥d(r), a ∈ Mp,q = d(r).
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Proof. For Banach spaces X,Y let L(X,Y ) denote the Banach space of all con-
tinuous linear operators from X into Y , equipped with the operator norm ∥ · ∥op.
According to (2.5) the linear map Φ : d(r) −→ L(ces(p), ces(q)) speci�ed by
Φ(a) := Ma

p,q is well de�ned. To establish the existence of Dp,q it su�ces to
show that Φ has closed graph. This is a standard argument after noting that
convergence of a sequence in d(r) implies its coordinatewise convergence. �

The following result shows, for p > q > 1, that every multiplier operator Ma
p,q

for a ∈ Mp,q is compact.

Proposition 2.5. Let p > q > 1. For a ∈ CN the following assertions are

equivalent.

(i) a ∈ Mp,q, that is, M
a
p,q : ces(p) −→ ces(q) is continuous.

(ii) Ma
p,q : ces(p) −→ ces(q) is compact.

(iii) a ∈ d(r) where 1
r = 1

q −
1
p .

Proof. (i) ⇐⇒ (iii) is precisely the characterization (2.5) of Bennett.
(ii) =⇒ (i) is clear as every compact linear operator is continuous.

(iii) =⇒ (ii). Let a(N) := (a1, . . . , aN , 0, 0, . . .) for N ∈ N. Then a−a(N) ∈ d(r)

for N ∈ N and limN→∞ ∥a−a(N)∥d(r) = 0; see Lemma 2.3. By (2.5) the operators

Ma
p,q,M

a(N)

p,q and Ma−a(N)

p,q = Ma
p,q−Ma(N)

p,q all belong to L(ces(p), ces(q)). Lemma

2.4 yields that ∥Ma
p,q −Ma(N)

p,q ∥op ≤ Dp,q∥a− a(N)∥d(r), for N ∈ N. Hence, Ma
p,q

is compact as each operator Ma(N)

p,q has �nite rank. �
We now consider further properties of multiplier operators for the case when

p = q. The space L(ces(p), ces(p)) is simply denoted by L(ces(p)).

Lemma 2.6. Let 1 < p < ∞. Then

∥Ma
p ∥op = ∥a∥∞, a ∈ ℓ∞ = Mp. (2.6)

Proof. Just prior to Proposition 2.2 it was noted that ∥Ma
p ∥op ≤ ∥a∥∞. On the

other hand, since Ma
p (ej) = ajej for j ∈ N, it is clear that the point spectrum

σpt(M
a
p ), consisting of all the eigenvalues of Ma

p , satis�es

a(N) := {aj : j ∈ N} ⊆ σpt(M
a
p ) ⊆ σ(Ma

p ).

Then the spectral radius inequality for operators, [10, Ch. VII, Lemma 3.4], yields

∥Ma
p ∥op ≥ r(Ma

p ) := sup{|λ| : λ ∈ σ(Ma
p )} ≥ sup

j∈N
|aj | = ∥a∥∞.

�
The spectrum of multiplier operators in L(ces(p)) can now be determined.

Proposition 2.7. Let 1 < p < ∞. Then

σ(Ma
p ) = a(N) = {aj : j ∈ N}, a ∈ Mp. (2.7)

Proof. From the proof of Lemma 2.6 we have a(N) ⊆ σpt(M
a
p ) ⊆ σ(Ma

p ). Since

σ(Ma
p ) is a closed set in C, it follows that a(N) ⊆ σ(Ma

p ).

Suppose that λ ̸∈ a(N). Then b = (bn)n with bn := 1
λ−an

for n ∈ N belongs to

ℓ∞ = Mp. Using the formula λI − Ma
p = Mλ1−a

p (with I the identity operator
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on ces(p) and 1 := (1, 1, 1, . . .)) it is routine to check that (λI −Ma
p )M

b
p = I =

M b
p(λI − Ma

p ). Hence, λI − Ma
p is invertible in L(ces(p)) and so λ lies in the

resolvent set of Ma
p . This establishes the inclusion σ(Ma

p ) ⊆ a(N). �

For a Banach space X, an operator T ∈ L(X) := L(X,X) is mean ergodic

(resp. uniformly mean ergodic) if its sequence of Cesàro averages

T[n] :=
1

n

n∑
m=1

Tm, n ∈ N, (2.8)

converges to some operator P ∈ L(X) in the strong operator topology τs, i.e.,
limn→∞ T[n](x) = P (x) for each x ∈ X, [10, Ch. VIII] (resp. in the operator
norm topology τb). According to [10, Ch. VIII, Corollary 5.2] there then exists
the direct sum decomposition

X = Ker(I − T )⊕ (I − T )(X). (2.9)

Moreover, we have the identities (I−T )T[n] = T[n](I−T ) = 1
n(T−Tn+1), for n ∈

N, and, setting T[0] := I, that

1

n
Tn = T[n] −

(n− 1)

n
T[n−1], n ∈ N. (2.10)

An operator T ∈ L(X) is called power bounded if supn∈N ∥Tn∥op < ∞. In this

case it is clear that necessarily limn→∞
∥Tn∥op

n = 0. A standard reference for mean
ergodic operators is [15]. Finally, de�ne D := {z ∈ C : |z| < 1}.

Proposition 2.8. Let 1 < p < ∞ and a ∈ Mp = ℓ∞. The following statements

are equivalent.

(i) ∥a∥∞ ≤ 1.
(ii) The multiplier operator Ma

p ∈ L(ces(p)) is power bounded.

(iii) The multiplier operator Ma
p ∈ L(ces(p)) is mean ergodic.

(iv) The spectrum σ(Ma
p ) ⊆ D.

(v) limn→∞
(Ma

p )
n

n = 0 relative to τs in L(ces(p)).

Proof. (i) =⇒ (ii). Since Mp is an algebra under coordinatewise multiplication in
CN we have (Ma

p )
n = Man

p (where an := (anj )j for a = (aj)j) and so, via Lemma

2.6, ∥(Ma
p )

n∥op = ∥Man
p ∥op = ∥an∥∞ ≤ 1, n ∈ N.

(ii) =⇒ (iii). Power bounded operators in re�exive Banach spaces are always
mean ergodic, [19].
(i) =⇒ (iv). Since ∥a∥∞ = sup{|λ| : λ ∈ a(N)} ≤ 1, (2.7) implies σ(Ma

p ) ⊆ D.
(iv) =⇒ (i). Clear from (2.7).
(iii) =⇒ (i). Suppose that ∥a∥∞ > 1. Then there exists k ∈ N such that |ak | > 1.
Since (Ma

p )
n(ek) = ankek for n ∈ N, it follows that

∥(Ma
p )

n(ek)∥ces(p)
n

=
|ak|n

n
∥ek∥ces(p), n ∈ N,

with |ak| > 1. Hence, the sequence { (Ma
p )

n

n }∞n=1 cannot converge to 0 ∈ L(ces(p))
in the topology τs, thereby violating a necessary condition for Ma

p to be mean
ergodic (see (2.10)); contradiction! So, ∥a∥∞ ≤ 1.
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(iii) =⇒ (v). This follows from (2.10).
(v) =⇒ (i). See the proof of (iii) =⇒ (i). �

In view of Proposition 2.8 we may assume that ∥a∥∞ ≤ 1 and Ma
p is power

bounded whenever it is mean ergodic. Then limn→∞
∥(Ma

p )
n∥op

n = 0 and so, by a
well known result of Lin, [17], the uniform mean ergodicity of Ma

p is equivalent to

the range (I −Ma
p )(ces(p)) = (M1−a

p )(ces(p)) of I −Ma
p being a closed subspace

of ces(p).
Given w ∈ CN de�ne its support by S(w) := {n ∈ N : wn ̸= 0} in which case

wχS(w) = w as elements of CN. If w ∈ ℓ∞, then for each 1 < p < ∞ we have

Mw
p (ces(p)) := {wx : x ∈ ces(p)} = {wχS(w)x : x ∈ ces(p)}. (2.11)

We will also require the closed subspace of ces(p) which is the range of the

continuous projection operator M
χS(w)
p , i.e.,

Xw,p := {χS(w)x : x ∈ ces(p)} = M
χS(w)
p (ces(p)). (2.12)

It is routine to check that Xw,p is Mw
p -invariant. Let M̃w

p : Xw,p −→ Xw,p be

the restriction of Mw
p so that M̃w

p ∈ L(Xw,p). Since wn ̸= 0 for each n ∈ S(w),

it follows that M̃w
p is injective. Hence, M̃w

p is a vector space isomorphism of

Xw,p onto its range M̃w
p (Xw,p) in Xw,p. By (2.11) and (2.12) it is clear that

M̃w
p (Xw,p) = Mw

p (ces(p)) whenever Mw
p (ces(p)) is closed in ces(p).

Lemma 2.9. Let w ∈ ℓ∞ and 1 < p < ∞. If the range Mw
p (ces(p)) is closed in

ces(p), then 0 ̸∈ (wχS(w))(N).

Proof. By the discussion prior to Lemma 2.9, M̃w
p (Xw,p) is a Banach space for

the norm ∥ · ∥ces(p) restricted to the closed subspace Mw
p (ces(p)) = M̃w

p (Xw,p) of

ces(p). Via the open mapping theorem M̃w
p : Xw,p −→ Xw,p is then a Banach

space isomorphism. So, there exists T ∈ L(Xw,p) satisfying

M̃w
p T = I = TM̃w

p . (2.13)

For each n ∈ S(w) the basis vector en ∈ Xw,p. De�ne y
(n) := T (en) for n ∈ S(w).

It follows from (2.13) that en = wy(n). Since the k-th coordinate of en is 0

for k ∈ N\{n}, the same is true of wy(n). Accordingly, en = wny
(n) and so

T (en) = y(n) = 1
wn

en for each n ∈ S(w). But, {en : n ∈ S(w)} is a basis for Xw,p

and T ∈ L(Xw,p) from which we can deduce that T (x) = w−1x for all x ∈ Xw,p

(with w−1 := ( 1
wn

)n∈S(w)). Setting v := w−1χS(w) ∈ CN, it follows that

vx = T (χS(w)x) = TM
χS(w)
p (x) = (jTM

χS(w)
p )(x), (2.14)

for each x ∈ ces(p), with j : Xw,p −→ ces(p) being the natural inclusion map

and (2.14) holding as equalities in CN. But, jTM
χS(w)
p ∈ L(ces(p)) if we interpret

M
χS(w)
p : ces(p) −→ Xw,p and hence, (2.14) actually holds in ces(p). That is,

Mv = jTM
χS(w)
p belongs to L(ces(p)) which means that v ∈ Mp or, equivalently,

that v ∈ ℓ∞. This implies the desired conclusion. �
Proposition 2.10. Let 1 < p < ∞ and a ∈ Mp = ℓ∞. The following assertions

are equivalent.
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(i) Ma
p is uniformly mean ergodic.

(ii) ∥a∥∞ ≤ 1 and 1 ̸∈ a(N)\{1}.

Proof. (i) =⇒ (ii). By the discussion immediately after Proposition 2.8 we know
that (i) implies ∥a∥∞ ≤ 1 and the range of I − Ma

p = M1−a
p is closed in

ces(p). Then w := 1 − a satis�es the hypothesis of Lemma 2.9. Accordingly,

0 ̸∈ ((1− a)χS(1−a)(N) which is equivalent to 1 ̸∈ a(N)\{1}.
(ii) =⇒ (i). The condition 1 ̸∈ a(N)\{1} implies that u := (1 − a)−1χS(1−a)

belongs to ℓ∞. In particular, Mu
p ∈ L(ces(p)). Moreover, w := (1 − a) ∈ ℓ∞

satis�es (in L(ces(p))) the identity Mw
p Mu

p = M
χS(w)
p . It follows from (2.11) that

Mw
p (ces(p)) ⊆ M

χS(w)
p (ces(p)) = Xw,p (see (2.12)). It is routine to verify the

reverse inclusion and so actually Mw
p (ces(p)) = Xw,p. In particular, the range of

M1−a
p = I − Ma

p is closed in ces(p). Since ∥a∥∞ ≤ 1 implies that Ma
p is power

bounded (cf. Proposition 2.8), it follows that limn→∞
∥(Ma

p )
n∥op

n = 0. Hence, the
criterion of Lin can be applied to conclude thatMa

p is uniformly mean ergodic. �
An example of a multiplier operator which is mean ergodic but not uniformly

ergodic is Ma
p with a := (1− 1

n)n.
In (2.9), with X := ces(p) and T := Ma

p (for ∥a∥∞ ≤ 1), note that

Ker(I −Ma
p ) = {x ∈ ces(p) : xn = 0 for all n ∈ N with an ̸= 1}.

Concerning the linear dynamics of a continuous linear operator T : X −→
X de�ned on a separable, locally convex Hausdor� space X, recall that T is
hypercyclic if there exists x ∈ X whose orbit {Tnx : n ∈ N0 := {0} ∪ N} is
dense in X. If, for some x ∈ X, the projective orbit {λTnx : λ ∈ C, n ∈ N0} is
dense in X, then T is called supercyclic. Since this projective orbit coincides with
∪∞
n=0T

n(span{x}) we see that supercyclic is the same as 1-supercyclic as de�ned
in [4]. Hypercyclicity always implies supercyclicity but not conversely.

Lemma 2.11. Let a = (an)n ∈ CN and de�ne the multiplier operator Ma :
CN −→ CN by Ma(x) := ax for x ∈ CN. Then Ma is not supercyclic in the

Fréchet space CN.

Proof. The continuous dual space (CN)′ of CN is the space φ. Clearly Ma is
continuous on CN and its dual operator (Ma)′ : φ −→ φ is given by (Ma)′(y) = ay
for y ∈ φ.Moreover, it follows from (Ma)′(ej) = ajej for j ∈ N that each canonical
basis vector ej ∈ φ is an eigenvector of (Ma)′. According to Theorem 2.1 of [4]
the operator Ma ∈ L(CN) cannot be supercyclic. �

Given 1 < p < ∞ and a ∈ CN the multiplier operator Ma : CN −→ CN maps
ℓp into ℓp if and only if a ∈ ℓ∞, [3, table 1, p.69]. Denote this restricted operator
by Ma

{p} : ℓp −→ ℓp.

Proposition 2.12. Let 1 < p < ∞ and a ∈ ℓ∞.

(i) The multiplier operator Ma
{p} ∈ L(ℓp) is not supercyclic.

(ii) The multiplier operator Ma
p ∈ L(ces(p)) is not supercyclic.

Proof. (i) Since ℓp is dense in CN (as it contains φ) and the natural inclusion
ℓp ↪→ CN is continuous, the supercyclicity of Ma

{p} ∈ L(ℓp) would imply the
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supercyclicity of Ma ∈ L(CN), which is not the case (cf. Lemma 2.11). Hence,
Ma

{p} is not supercyclic.

(ii) Since ces(p) is dense in CN and the inclusion ces(p) ↪→ CN is continuous,
the analogous argument to that of part (i) applies. �

3. The cesàro operators

Consider a pair 1 < p, q < ∞. Denote by Cc(p),c(q) (resp. Cc(p),q; Cp,c(q); Cp,q)
the Cesàro operator C when it acts from ces(p) into ces(q) (resp. ces(p) into ℓq; ℓp
into ces(q); ℓp into ℓq), whenever this operator exists. The closed graph theorem
then ensures that this operator is continuous. We use the analogous notation
for the natural inclusion maps ic(p),c(q); ic(p),q; ip,c(q); ip,q whenever they exist.
The main aim of this section is to identify all pairs p, q for which these inclusion
operators and Cesàro operators do exist and, for such pairs, to determine whether
or not the operator is compact. For each 1 < p < ∞, the spectrum of Cp,p ∈ L(ℓp)
is well known, [16, Theorem 2], [20, Theorem 4], and coincides with the spectrum
of Cc(p),c(p) ∈ L(ces(p)); see (1.6).

We begin with a preliminary result.

Lemma 3.1. Let 1 < p < ∞.

(i) The operator Cc(p),p : ces(p) −→ ℓp exists and satis�es ∥Cc(p),p∥op ≤ 1.
(ii) The largest amongst the class of spaces ℓr, for 1 ≤ r < ∞, which satisfy

ℓr ⊆ ces(p) is the space ℓp.

Proof. (i) Follows from the discussion immediately prior to Proposition 1.1.
(ii) See Remark 2.2(iii) of [6]. �

Proposition 3.2. Let 1 < p, q < ∞ be an arbitrary pair.

(i) The inclusion map ip,q : ℓp −→ ℓq exists if and only if p ≤ q, in which

case ∥ip,q∥op = 1.
(ii) The inclusion map ip,c(q) : ℓp −→ ces(q) exists if and only if p ≤ q, in

which case ∥ip,c(q)∥op ≤ q′.
(iii) The inclusion map ic(p),c(q) : ces(p) −→ ces(q) exists if and only if p ≤ q,

in which case ∥ic(p),c(q)∥op ≤ 1.
(iv) ces(p) ̸⊆ ℓq for all choices of 1 < p, q < ∞.

Proof. (i) This is well known.
(ii) Lemma 3.1(ii) shows that ℓp ̸⊆ ces(q) if p > q.
Let p ≤ q. For x ∈ ℓp we have ∥ip,c(q)(x)∥ces(q) = ∥x∥ces(q) with

∥x∥ces(q) := ∥C(|x|)∥q ≤ ∥Cq,q∥op∥x∥q ≤ ∥Cq,q∥op∥x∥p,

where the last inequality follows via part (i). Since ∥Cq,q∥op = p′, [13, Theorem
326], the desired conclusion is clear.

(iii) If p > q, then ces(p) ̸⊆ ces(q). Indeed, by Lemma 3.1(ii) there exists y ∈ ℓp
with y ̸∈ ces(q). By part (ii), y ∈ ces(p).

Let p ≤ q. Fix x ∈ ces(p). By Lemma 3.1(i) we have C(|x|) ∈ ℓp and hence, by
part (i), C(|x|) ∈ ℓq. Accordingly,

∥x∥ces(q) := ∥C(|x|)∥q ≤ ∥C(|x|)∥p = ∥x∥ces(p).
This shows that ic(p),c(q) exists and ∥ic(p),c(q)∥op ≤ 1.
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(iv) For arbitrary 1 < p < ∞ there exists x ∈ ces(p) with x ̸∈ ℓ∞, [6, Remark
2.2(ii)]. Then also x ̸∈ ℓq for every 1 < q < ∞. �

If 1 < p < q < ∞, then the inclusion ces(p) ⊆ ces(q) as guaranteed by
Proposition 3.2(iii) is actually proper. Indeed, by Lemma 3.1(ii) there exists
x ∈ ℓq with x ̸∈ ces(p). Then y := C(|x|) ∈ ces(q); see Proposition 3.2(ii). But,
x ̸∈ ces(p) implies |x| ̸∈ ces(p) and so y ̸∈ ces(p); see Proposition 1.1. That
ces(p) $ ces(q) also follows from the next result.

Proposition 3.3. Let 1 < p, q < ∞ with p ̸= q. Then ces(p) is not Banach space

isomorphic to ces(q).

Proof. According to (1.3) the closed (sectional) subspace

Y := {x ∈ ces(p) : xk = 0 unless k = 2j for some j = 0, 1, 2, . . .}
is isomorphic to a weighted ℓp-space (as ∥x∥[p] = (

∑∞
j=0 2

j(1−p)|x2j |p)1/p for x ∈
Y ) and hence, also isomorphic to ℓp. Suppose that ces(p) is isomorphic to ces(q).
Then ℓp is isomorphic to a closed subspace of ces(q). Since ces(q) is isomorphic
to a closed subspace of the in�nite ℓq-sum ℓq(En) with each En, n ∈ N, a �nite
dimensional space, [21, Theorem 1], it follows that ℓp is isomorphic to a closed
subspace of ℓq(En). But, X := ℓp has a shrinking basis (it is re�exive) and so
is isomorphic to ℓq(Dk) with each Dk, k ∈ N, a �nite dimensional space, [18,
Theorem 2.d.1]. Since ℓq is clearly isomorphic to a closed (sectional) subspace
of ℓq(Dk), it follows that ℓq is isomorphic to a closed subspace of ℓp with p ̸= q,
which is not the case, [18, p.54]. So, ces(p) is not isomorphic to ces(q). �

Via Proposition 3.2 we now determine which inclusion maps are compact.

Proposition 3.4. Let 1 < p ≤ q < ∞ be arbitrary.

(i) The inclusion ip,q : ℓp −→ ℓq is never compact.

(ii) The inclusion ic(p),c(q) : ces(p) −→ ces(q) is compact if and only if p < q.
(iii) The inclusion ip,c(q) : ℓp −→ ces(q) is compact if and only if p < q.

Proof. (i) The image under ip,q of the unit basis vectors {en : n ∈ N} ⊆ ℓp
has no Cauchy subsequence (hence, no convergent subsequence) in ℓq because

∥en − em∥q = 21/q for all n ̸= m.
(ii) Since ic(p),c(p) is the identity operator on ces(p) it is surely not compact.

So, assume that p < q. Then the constant element a := 1 satis�es (ann
1
q
− 1

p )n =

(n
1
q
− 1

p )n ∈ c0 and hence, by Proposition 2.2 the multiplier operator M1
p,q ∈

L(ces(p), ces(q)) is compact. But,M1
p,q is precisely the inclusion operator ic(p),c(q).

(iii) Since Cp,p is not compact (by (1.6) its spectrum is an uncountable set)
and Cp,p = Cc(p),p ip,c(p), also ip,c(p) fails to be compact. So, assume that p < q.
Then the factorization ip,c(q) = ic(p),c(q) ip,c(p) together with the compactness of
ic(p),c(q) (see part (ii)) shows that ip,c(q) is compact. �

Now that the continuity and compactness of the various inclusion operators are
completely determined we can do the same for the Cesàro operators C : X −→ Y
where X,Y ∈ {ℓp, ces(q) : p, q ∈ (1,∞)}. We begin with continuity.

Proposition 3.5. Let 1 < p, q < ∞ be an arbitrary pair.

(i) Cp,q : ℓp −→ ℓq exists if and only if p ≤ q, in which case ∥Cp,q∥op ≤ p′.
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(ii) Cp,c(q) : ℓp −→ ces(q) exists if and only if p ≤ q, in which case ∥Cp,c(q)∥op ≤
p′q′.

(iii) Cc(p),c(q) : ces(p) −→ ces(q) exists if and only if p ≤ q, in which case

∥Cc(p),c(q)∥op ≤ q′.
(iv) Cc(p),q : ces(p) −→ ℓq exists if and only if p ≤ q, in which case ∥Cc(p),q∥op ≤

1.

Proof. (ii) Let p > q. According to Lemma 3.1(ii) there exists x ∈ ℓp \ ces(q),
in which case also |x| ∈ ℓp \ ces(q). If C(|x|) ∈ ces(q), then Proposition 1.1
implies that also |x| ∈ ces(q); contradiction. So, |x| ∈ ℓp but C(|x|) ̸∈ ces(q), i.e.,
"Cp,c(q)" does not exist.

Suppose then that p ≤ q. Then Cp,p ∈ L(ℓp) exists with ∥Cp,p∥op = p′ and
ip,c(q) : ℓp −→ ces(q) exists with ∥ip,c(q)∥op ≤ q′ (cf. Proposition 3.2(ii)). Hence,
the composition Cp,c(q) = ip,c(q) Cp,p exists and ∥Cp,c(q)∥op ≤ p′q′.

(i) Let p > q. If Cp,q exists, then by Proposition 3.2(ii) Cp,c(q) = iq,c(q)Cp,q also
exists. This contradicts part (ii) which was just proved.

So, assume that p ≤ q. Then Cp,p ∈ L(ℓp) exists with ∥Cp,p∥op = p′ and ip,q
exists with ∥ip,q∥op = 1 (cf. Proposition 3.2(i)). Hence, Cp,q = ip,q Cp,p exists and
∥Cp,q∥op ≤ p′.

(iii) Let p > q. If Cc(p),c(q) exists, then by Proposition 3.2(i) also Cp,c(q) =
Cc(p),c(q) ip,c(p) exists. This contradicts part (ii) above.

So, assume that p ≤ q. Fix x ∈ ces(p). Then also |x| ∈ ces(p) and so C(|x|) ∈
ℓp ⊆ ℓq; see Lemma 3.1(i) and Proposition 3.2(i). Moreover, |C(x)| ∈ ℓq as
|C(x)| ≤ C(|x|). Hence,

∥C(x)∥ces(q) := ∥C(|C(x)|)∥q ≤ ∥Cq,q∥op∥|C(x)|∥q ≤ q′∥C(|x|)∥q
≤ q′∥C(|x|)∥p = q′∥x∥ces(p).

This shows that Cc(p),c(q) exists and ∥Cc(p),c(q)∥op ≤ q′.
(iv) Let p > q. If Cc(p),q exists, then also Cc(p),c(q) = iq,c(q) Cc(p),q exists (cf.

Proposition 3.2(ii)). This contradicts part (iii).
Assume now that p ≤ q. Since Cc(p),p exists with ∥Cc(p),p∥op ≤ 1 (cf. Lemma

3.1(i)) and ip,q exists with ∥ip,q∥op = 1 (cf. Proposition 3.2(i)), it follows that the
composition Cc(p),q = ip,q Cc(p),p exists and ∥Cc(p),q∥op ≤ 1. �

Concerning the proof of part (iii) of Proposition 3.5 when p ≤ q, it is also
clear from Cc(p),c(q) = ic(p),c(q) Cc(p),c(p) that Cc(p),c(q) exists. However, since
∥ic(p),c(q)∥op ≤ 1 (cf. Proposition 3.2(iii)) and ∥Cc(p),c(p)∥op = p′, this approach
only yields ∥Cc(p),c(q)∥op ≤ p′ whereas the given proof of (iii) yields ∥Cc(p),c(q)∥op ≤
q′ which is a better estimate when p < q.

We now have all the facts needed to prove the main result of this section.

Proposition 3.6. Let 1 < p ≤ q < ∞ be arbitrary.

(i) The Cesàro operator Cp,q : ℓp −→ ℓq is compact if and only if p < q.
(ii) The Cesàro operator Cp,c(q) : ℓp −→ ces(q) is compact if and only if p < q.
(iii) The Cesàro operator Cc(p),c(q) : ces(p) −→ ces(q) is compact if and only

if p < q.
(iv) The Cesàro operator Cc(p),q : ces(p) −→ ℓq is compact if and only if p < q.
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Proof. (i) Since σ(Cp,p) is an uncountable set (see the comments prior to Lemma
3.1), it is clear that Cp,p is not compact. So, assume that p < q. Since Cp,q =
Cc(q),q ip,c(q) with Cc(q),q : ces(q) −→ ℓq continuous (cf. Lemma 3.1(i)) and ip,c(q) :
ℓp −→ ces(q) compact (by Proposition 3.4(iii)), it follows that Cp,q is compact.

(ii) For p = q observe that (Cc(p),c(p))
2 = Cp,c(p) Cc(p),p. By (1.6) and the

spectral mapping theorem, [10, Ch. VII, Theorem 3.11], we see that

σ((Cc(p),c(p))
2) = {λ2 : |λ− p′

2 | ≤
p′

2 }

is an uncountable set and so (Cc(p),c(p))
2 is not compact. Hence, also Cp,c(p) is

not compact.
Assume then that p < q. Since the inclusion ic(p),c(q) : ces(p) −→ ces(q)

is compact (cf. Proposition 3.4(ii)), it is clear from the factorization Cp,c(q) =
ic(p),c(q) Cp,c(p) that also Cp,c(q) is compact.

(iii) For p = q it follows from (1.6) that σ(Cc(p),c(p)) is an uncountable set
and so Cc(p),c(p) is not compact. Suppose now that p < q. Since the inclusion
ic(p),c(q) : ces(p) −→ ces(q) is compact (by Proposition 3.4(ii)), the factorization
Cc(p),c(q) = ic(p),c(q) Cc(p),c(p) shows that Cc(p),c(q) is compact.

(iv) For p = q we have Cc(p),c(p) = ip,c(p) Cc(p),p. By part (iii) the operator
Cc(p),c(p) is not compact and hence, also Cc(p),p is not compact.

Assume now that p < q. Select any r satisfying p < r < q, in which case we
have Cc(p),q = Cc(r),q ic(p),c(r) with Cc(r),q continuous (by Proposition 3.5(iv)) and
ic(p),c(r) compact (via Proposition 3.4(ii)). Hence, also Cc(p),q is compact. �

Our �nal result concerns the mean ergodicity and linear dynamics of Cesàro
operators.

Proposition 3.7. Let 1 < p < ∞.

(i) The Cesàro operator Cp,p : ℓp −→ ℓp is not power bounded, not mean

ergodic and not supercyclic.

(ii) The Cesàro operator Cc(p),c(p) : ces(p) −→ ces(p) is not power bounded,

not mean ergodic and not supercyclic.

Proof. (i) That Cp,p is neither power bounded nor mean ergodic is Proposition
4.2 of [1]. It is known that the Cesàro operator C : CN −→ CN is not supercyclic,
[2, Proposition 4.3]. Since ℓp is dense in CN and the natural inclusion ℓp ⊆ CN is
continuous, the supercyclicity of Cp,p in ℓp would imply that C : CN −→ CN is
supercyclic. Hence, Cp,p ∈ L(ℓp) is not supercyclic.

(ii) Suppose that Cc(p),c(p) is mean ergodic. According to (2.10) we have

limn→∞
(Cc(p),c(p))

n

n = 0 for τs in L(ces(p)) and hence, σ(Cc(p),c(p)) ⊆ D, [10,
Ch. VIII, Lemma 8.1]. This contradicts (1.6). Hence, Cc(p),c(p) cannot be mean
ergodic. Since power bounded operators in re�exive Banach spaces are always
mean ergodic, [19], it follows that Cc(p),c(p) is not power bounded. Arguing as in

part (i), since ces(p) is dense in CN and the inclusion ces(p) ⊆ CN is continuous,
it follows that Cc(p),c(p) is not supercyclic. �
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