MULTIPLIER AND AVERAGING OPERATORS IN THE **BANACH SPACES** $\text{ces}(p)$ **,** $1 < p < \infty$

ANGELA A. ALBANESE, JOSÉ BONET, WERNER J. RICKER

ABSTRACT. The Banach sequence spaces $ces(p)$ are generated in a specified way via the classical spaces $\ell_p, 1 \leq p \leq \infty$. For each pair $1 \leq p, q \leq \infty$ the (p, q) -multiplier operators from $ces(p)$ into $ces(q)$ are known. We determine precisely which of these multipliers is a compact operator. Moreover, for the case of $p = q$ a complete description is presented of those (p, p) -multiplier operators which are mean (resp. uniform mean) ergodic. A study is also made of the linear operator *C* which maps a numerical sequence to the sequence of its averages. All pairs $1 < p, q < \infty$ are identified for which *C* maps $ces(p)$ into $ces(q)$ and, amongst this collection, those which are compact. For $p = q$, the mean ergodic properties of *C* are also treated.

1. Introduction.

For each element $x = (x_n)_n = (x_1, x_2, \ldots)$ of $\mathbb{C}^{\mathbb{N}}$ let $|x| := (|x_n|)_n$ and write *x* ≥ 0 if *x* = |*x*|*.* Of course, *x* ≤ *y* means that $(y − x) ≥ 0$. The Cesàro operator $C:\mathbb{C}^{\mathbb{N}}\longrightarrow\mathbb{C}^{\mathbb{N}},$ defined by

$$
C(x):=(x_1,\ \frac{x_1+x_2}{2},\ \frac{x_1+x_2+x_3}{3},...),\quad x\in\mathbb{C}^{\mathbb{N}},
$$

satisfies $|C(x)| \leq C(|x|)$ for $x \in \mathbb{C}^{\mathbb{N}}$ and is a vector space isomorphism of $\mathbb{C}^{\mathbb{N}}$ onto itself. It is also a topological isomorphism when $\mathbb{C}^{\mathbb{N}}$ is considered as a (locally convex) Fréchet space with respect to the coordinatewise convergence. For each $1 < p < \infty$ define

$$
ces(p) := \left\{ x \in \mathbb{C}^{\mathbb{N}} : \|x\|_{ces(p)} := \|(\frac{1}{n} \sum_{k=1}^{n} |x_k|)_{n} \|_{p} = \|C(|x|) \|_{p} < \infty \right\}, \quad (1.1)
$$

where *∥ · ∥^p* denotes the standard norm in *ℓp.* An intensive study of the Banach spaces $ces(p)$, $1 < p < \infty$, was undertaken in [3]; see also the references therein. In particular, they are reflexive, *p*-concave Banach lattices (for the order induced by $\mathbb{C}^{\mathbb{N}}$ and the canonical vectors $e_k := (\delta_{nk})_n$, for $k \in \mathbb{N}$, form an unconditional basis, [3], [6]. For any pair $1 < p, q < \infty$ the space $ces(p)$ is known not to be isomorphic to ℓ_q , [3, Proposition 15.13]. It is shown in Proposition 3.3 (for all $p \neq q$) that $ces(p)$ is also not isomorphic to $ces(q)$. It is important to note that the inequality

$$
\frac{A_p}{k^{1/p'}} \le ||e_k||_{ces(p)} \le \frac{B_p}{k^{1/p'}}, \quad k \in \mathbb{N},
$$
\n(1.2)

Key words and phrases. Banach sequence spaces *ces*(*p*), multiplier, compact operator, Cesàro operator, mean ergodic operator.

Mathematics Subject Classification 2010: Primary 46B45, 47B37; Secondary 46B42, 46G10. 47A16, 47B10.

is valid for strictly positive constants A_p , B_p and with $\frac{1}{p} + \frac{1}{p}$ $\frac{1}{p'} = 1$, [3, Lemma 4.7]. It is known, [3, p.26], that $ces(p) = cop(p)$ with equivalent norms, where

$$
cop(p) := \Big\{ x \in \mathbb{C}^{\mathbb{N}} : ||x||_{cop(p)} := ||(\sum_{k=n}^{\infty} \frac{|x_k|}{k})_n||_p < \infty \Big\}, \quad 1 < p < \infty.
$$

The dual Banach spaces $(ces(p))'$, $1 < p < \infty$, are described in Section 12 of [3]. Yet another equivalent norm in *ces*(*p*)*,* via the dyadic decomposition of N*,* is available, [11, Theorem 4.1]. Namely, $x \in \mathbb{C}^{\mathbb{N}}$ belongs to $ces(p)$ if and only if

$$
||x||_{[p]} := \left(\sum_{j=0}^{\infty} 2^{j(1-p)} \left(\sum_{k=2^j}^{2^{j+1}-1} |x_k|\right)^p\right)^{1/p} < \infty. \tag{1.3}
$$

The spaces $ces(p)$, $1 < p < \infty$, also arise in a very different way. Fix $1 < p < \infty$. Since the Cesàro operator $C_{p,p}$: $\ell_p \longrightarrow \ell_p$, i.e., C restricted to ℓ_p , is a positive operator between Banach lattices, it is natural to look for continuous *ℓp*-valued extensions of $C_{p,p}$ to Banach lattices $X \subseteq \mathbb{C}^{\mathbb{N}}$ which are larger than ℓ_p and solid (i.e., $y \in \mathbb{C}^{\mathbb{N}}$ and $|y| \leq |x|$ with $x \in X$ implies that $y \in X$). The *largest* of all those solid Banach lattices in C ^N for which such a continuous, *ℓp*-valued extension of $C_{p,p}$: $\ell_p \longrightarrow \ell_p$ is possible is precisely $ces(p)$, [6, p.62]. Of course, this "largest" extension" $C_{c(p),p}$: $ces(p) \longrightarrow \ell_p$ is the restriction of C from $\mathbb{C}^{\mathbb{N}}$ to $ces(p)$. Somewhat surprisingly, $C_{c(p),p}$ also possesses an *integral representation*. That is, $ces(p)$ coincides with the L^1 -space of an ℓ_p -valued vector measure m_p and $C_{c(p),p}$ is given by

$$
C_{c(p),p}(x) = \int_{\mathbb{N}} x(n) dm_p(n), \quad x \in L^1(m_p) = ces(p).
$$

Here $m_p : \mathcal{R} \longrightarrow \ell_p$ is the *σ*-additive vector measure defined on the *δ*-ring \mathcal{R} of all finite subsets of $\mathbb N$ by

$$
m_p(A) := C_{p,p}(\chi_A), \quad A \in \mathcal{R}, \tag{1.4}
$$

where $\chi_A : \mathbb{N} \longrightarrow \mathbb{C}$ is the element of $\mathbb{C}^{\mathbb{N}}$ given by $\chi_A = \sum_{k \in A} e_k$ for each $A \subseteq \mathbb{N}$. This claim certainly requires a proof. First, the space $L^1(m_p)$ of all m_p -integrable functions on \mathbb{N} , as defined in $[8]$, $[9]$, is the *optimal domain* for the operator $C_{p,p}$ (in the sense of [9, Corollaries 2.4 and 2.6]) within the class of all Banach function spaces (briefly, B.f.s) over (N, \mathcal{R}, μ) which have absolutely continuous norm (briefly, a.c.); here μ denotes counting measure. More precisely, $L^1(m_p) \subseteq$ $\mathbb{C}^{\mathbb{N}}$ contains the domain space ℓ_p of $C_{p,p}$, the integration map $I_{m_p}: L^1(m_p) \longrightarrow \ell_p$ (given by $x \mapsto \int_{\mathbb{N}} x dm_p$ for $x \in L^1(m_p)$) satisfies $I_{m_p}(x) = C_{p,p}(x)$ for each $x \in \ell_p \subseteq L^1(m_p)$, and $L^1(m_p)$ is the *largest* of all B.f.s.' over $(\mathbb{N}, \mathcal{R}, \mu)$ having a.c.-norm to which $C_{p,p}$ can be extended while still maintaining its values in ℓ_p . To verify this, we observe that an equivalent norm in $L^1(m_p)$ is given by

$$
\|x\|_{L^1(m_p)} := \sup \left\{ \left\| \int_A x \, dm_p \right\|_p : A \in \mathcal{R} \right\}, \quad x \in L^1(m_p);
$$

see (3) on p.434 of [8]. But, for $x \in L^1(m_p)$ and each $A \in \mathcal{R}$, the function $x\chi_A$ is an \mathcal{R} -simple function and so it follows from (1.4) that $\int_A x \, dm_p = C_{p,p}(x \chi_A)$. Now, for $x \in ces(p)$ fixed, note that

$$
\left\| \int_A x \, dm_p \right\|_p = \|C_{p,p}(x\chi_A)\|_p = \|C_{c(p),p}(x\chi_A)\|_p \le \|C_{c(p),p}(|x|)\|_p = \|x\|_{ces(p)} < \infty
$$

for every $A \in \mathcal{R}$. If we define $\int_A x \, dm_p := C_{c(p),p}(x \chi_A) \in \ell_p$ for an arbitrary subset $A \subseteq \mathbb{N}$, then *x* is m_p -integrable in the sense of [8, p.434], [9, p.133] $\text{with } ∥x\|_{L^1(m_p)} ≤ ||x||_{ces(p)}.$ Since $ces(p)$ itself is a B.f.s. over $(\mathbb{N}, \mathcal{R}, \mu)$ having an a.c.-norm and containing ℓ_p , we can conclude from the optimality of $L^1(m_p)$ that $ces(p) \subseteq L^1(m_p)$ with a continuous inclusion. On the other hand, recall that $ces(p)$ is the largest solid Banach lattice in $\mathbb{C}^{\mathbb{N}}$ which contains ℓ_p and C maps into ℓ_p . But, the B.f.s. $L^1(m_p)$ is such a solid Banach lattice which *C* maps into ℓ_p . Indeed, since $L^1(m_p) \subseteq \mathbb{C}^{\mathbb{N}}$ with ℓ_p dense in $L^1(m_p)$ (as ℓ_p contains the *R*-simple functions which are known to be dense in $L^1(m_p)$, $[8, p.434])$ and C acts in all of $\mathbb{C}^{\mathbb{N}},$ it follows from the fact that norm convergence of a sequence in $L^1(m_p)$ implies the pointwise convergence μ -a.e. of a subsequence, [9, p.134] (in this case meaning coordinatewise convergence in $\mathbb{C}^{\mathbb{N}}$), that the extended operator I_{m_p} is necessarily given by $I_{m_p}(x) = C(x)$ for all $x \in L^1(m_p)$. Accordingly $L^1(m_p) \subseteq ces(p)$ and hence, $L^1(m_p) = ces(p)$ with equivalence of the norms $\|\cdot\|_{L^1(m_p)}$ and $\|\cdot\|_{ces(p)}$. It is an important feature that m_p cannot be extended to a more traditional *σ*-additive, ℓ_p -valued vector measure defined on the *σ*-algebra 2^N generated by *R.* This is because its range $m_p(\mathcal{R})$ is an unbounded subset of ℓ_p . Indeed, for $A_n := \{1, 2, ..., N\} \in \mathcal{R}$ we have $m_p(A_N) = \sum_{j=1}^N e_j + N \sum_{j=N+1}^{\infty} \frac{1}{j}$ $\frac{1}{j}e_j$ and hence, $||m_p(A_N)||_p \geq N^{1/p}$ for all $N \in \mathbb{N}$.

Having presented several equivalent and varied descriptions of the spaces $ces(p)$, $1 < p < \infty$, we now formulate the aim of this note, namely to make a detailed analysis of certain linear operators defined on these spaces. Let us be more precise.

Given a pair $1 < p, q < \infty$, an element $a \in \mathbb{C}^{\mathbb{N}}$ is called a (p, q) -*multiplier* if it multiplies $ces(p)$ into $ces(q)$, that is, if $ax \in ces(q)$ for every $x \in ces(p)$, where the product $ax := (a_n x_n)_n$ is defined coordinatewise. The closed graph theorem ensures that the corresponding linear (p, q) -multiplier operator $M_{p,q}^a : x \mapsto ax$ is then necessarily *continuous* from $ces(p)$ into $ces(q)$. If $p = q$, then we denote $M_{p,p}^a$ simply by M_p^a and note that M_p^a is the diagonal operator acting in $ces(p)$ via the matrix having the scalars $\{a_n : n \in \mathbb{N}\}\$ in its diagonal. The vector space of all (p, q) -multipliers, denoted by $\mathcal{M}_{p,q}$ (or \mathcal{M}_p if $p = q$), has been completely determined by G. Bennett; see [3, pp.69-70], after recalling that $cop(p) = ces(p)$ for all $1 < p < \infty$.

In Section 2 we investigate various properties of the multiplier operators $M_{p,q}^a$ for all pairs $1 < p, q < \infty$ and $a \in M_{p,q}$. For instance, those multipliers $a \in M_{p,q}$ for which $M_{p,q}^a$ is a *compact operator* are characterized; see Propositions 2.2 and 2.5. Also, given $a \in \mathcal{M}_p = \ell_\infty$ it is shown that the *spectrum* of M_p^a is the set

$$
\sigma(M_p^a) = \overline{a(\mathbb{N})}, \quad 1 < p < \infty,
$$

where $a(\mathbb{N}) := \{a_n : n \in \mathbb{N}\} \subseteq \mathbb{C}$, and that $||M_p^a||_{op} = ||a||_{\infty}$ with $|| \cdot ||_{op}$ denoting the operator norm of $M_p^a : ces(p) \longrightarrow ces(p)$; see Lemma 2.6 and Proposition 2.7. Furthermore, those $a \in M_p$ are identified for which the operator M_p^a is mean ergodic (cf. Proposition 2.8) as well as those for which M_p^a is uniformly mean ergodic (cf. Proposition 2.10).

It is clear from (1.1) and the discussions above that the Cesàro operator *C* is intimately connected to the Banach spaces $ces(p)$, $1 < p < \infty$. Indeed, Hardy's classical inequality states, for $1 < p < \infty$, that

$$
\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} b_k\right)^p \le K_p \sum_{n=1}^{\infty} b_n^p
$$

for all choices of non-negative numbers ${b_n}_{n=1}^{\infty}$ and some constant $K_p > 0$, [12]. Setting $b_n := |x_n|$, for $n \in \mathbb{N}$ and each $x \in \ell_p$, it is immediate that $||C_{p,p}(|x|)||_p \le$ $K_p^{1/p}||x||_p$, that is, $\ell_p \subseteq ces(p)$ with a continuous inclusion; Remark 2.2 of [6] shows that this containment is strict. Moreover, the Cesàro operator $C_{c(p),p}$: $ces(p) \longrightarrow \ell_p$ is continuous; this was already implicitly used above. To see this fix $x \in ces(p)$. Using the fact that $\|\cdot\|_p$ is a Banach lattice norm yields

$$
||C_{c(p),p}(x)||_p = |||C(x)||_p \le ||C(|x|)||_p = ||x||_{ces(p)}.
$$

The connection between *C* and $ces(p)$ is further exemplified by the following remarkable result of Bennett, [3, Theorem 20.31].

Proposition 1.1. Let $1 < p < \infty$ and $x \in \mathbb{C}^{\mathbb{N}}$. Then

$$
x \in ces(p) \quad \text{if and only if} \quad C(|x|) \in ces(p). \tag{1.5}
$$

Further examples of Banach spaces $X \subseteq \mathbb{C}^{\mathbb{N}}$ such that $C(X) \subseteq X$ and for which Proposition 1.1 is valid (with *X* in place of $ces(p)$) are identified in [5], [6], [7].

In Section 3 it is shown that *C* maps $ces(p)$ into $ces(q)$, necessarily continuously, if and only if $1 < p \le q < \infty$; see Proposition 3.5. Furthermore, all pairs $1 < p, q < \infty$ are identified for which *C* maps ℓ_p into $ces(q)$ and for which *C* maps $ces(p)$ into ℓ_q , as well as the subclass of these continuous operators which are actually *compact*. Two important facts in this regard are that the Cesaro $o_{c(p),c(p)}: ces(p) \longrightarrow ces(p)$ has spectrum

$$
\sigma(C_{c(p),c(p)}) = \{\lambda \in \mathbb{C} : |\lambda - \frac{p'}{2}| \le \frac{p'}{2}\}, \quad 1 < p < \infty,\tag{1.6}
$$

[6, Theorem 5.1], and that the natural inclusion map $ces(p) \rightarrow ces(q)$ is compact whenever $1 < p < q$; see Proposition 3.4. A consequence of (1.6) is that $C_{c(p),c(p)}$ and *Cp,p* are never mean ergodic.

2. MULTIPLIER OPERATORS FROM $ces(p)$ INTO $ces(q)$.

According to table 16 on p.69 of [3], given $1 < p \le q < \infty$ an element $a =$ $(a_n)_n \in \mathbb{C}^{\mathbb{N}}$ belongs to $\mathcal{M}_{p,q}$ if and only if the element $(a_n n^{\frac{1}{q}-\frac{1}{p}})_n \in \ell_{\infty}$. Observe that $(\frac{1}{q} - \frac{1}{p})$ $\frac{1}{p}$) \leq 0. In particular, $\ell_{\infty} \subseteq M_{p,q}$ and, if $p = q$, then $M_p = \ell_{\infty}$. For fixed $a \in \ell_{\infty}$, it follows via the inequality $C(|au|) \leq ||a||_{\infty} C(|u|)$, for $u \in \mathbb{C}^{\mathbb{N}}$, that $||M_p^a(x)||_{ces(p)} = ||C(|ax|)||_p \le ||a||_{\infty} ||C(|x|)||_p = ||a||_{\infty} ||x||_{ces(p)}$, for all $x \in$ $ces(p)$. Hence, $\tilde{M_p^a}$: $ces(p) \longrightarrow ces(p)$ satisfies

$$
||M_p^a||_{op} \le ||a||_{\infty}, \quad a \in \ell_{\infty}, \quad 1 < p < \infty.
$$
 (2.1)

Here *∥.∥op* denotes the operator norm. We begin with a result which is probably known; due to the lack of a reference we include a proof. Let *φ* be the

vector subspace of $\mathbb{C}^{\mathbb{N}}$ consisting of all elements with only finitely many non-zero coordinates.

Lemma 2.1. Let $T: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ be a continuous linear operator and X, Y be a Banach sequence spaces satisfying $\varphi \subseteq X \subset \mathbb{C}^{\mathbb{N}}$ and $\varphi \subseteq Y \subseteq \mathbb{C}^{\mathbb{N}}$ with continuous inclusions such that $T(X) \subseteq Y$. Then the restriction $T : X \longrightarrow Y$ is a compact operator if and only if it satisfies the following property (K) , namely:

(K) If a norm bounded sequence $\{x_m\}_{m=1}^{\infty} \subseteq X$ satisfies $\lim_{m\to\infty} x_m = 0$ in the Fréchet space $\mathbb{C}^{\mathbb{N}}$, then $\lim_{m\to\infty} T(x_m) = 0$ in the Banach space Y.

Proof. By the closed graph theorem $T : X \longrightarrow Y$ is continuous.

Suppose first that $T: X \longrightarrow Y$ is compact. Let $\{x_m\}_{m=1}^{\infty} \subseteq X$ be any sequence in *X* satisfying $\lim_{m\to\infty} x_m = 0$ in $\mathbb{C}^{\mathbb{N}}$. Assume that the sequence $\{T(x_m)\}_{m=1}^{\infty}$ does not converge to 0 in *Y*. Select a subsequence ${x_{m_k}}_{k=1}^{\infty}$ of ${x_m}_{m=1}^{\infty}$ and $r > 0$ such that

$$
||T(x_{m_k})||_Y \ge r, \quad k \in \mathbb{N}.
$$
\n(2.2)

By compactness of *T* there exists $y \in Y$ and a subsequence $\{x_{m_{k(l)}}\}_{l=1}^{\infty}$ of $\{x_{m_k}\}_{k=1}^{\infty}$ such that $\lim_{l\to\infty} ||T(x_{m_{k(l)}}) - y||_Y = 0$. Continuity of the inclusion $Y \subseteq \mathbb{C}^{\mathbb{N}}$ implies that also $\lim_{l\to\infty} T(x_{m_{k(l)}}) = y$ in $\mathbb{C}^{\mathbb{N}}$. But, $\lim_{l\to\infty} x_{m_{k(l)}} = 0$ in $\mathbb{C}^{\mathbb{N}}$ and $T: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ is continuous. Accordingly, $\lim_{l\to\infty} T(x_{m_{k(l)}}) = 0$ in $\mathbb{C}^{\mathbb{N}}$ and so $y = 0$; contradiction to (2.2). Hence, necessarily $T(x_m) \rightarrow 0$ in *Y* for $m \rightarrow \infty$. This establishes that *T* has property (*K*)*.*

Conversely, suppose that *T* has property (K) . Let $\{x_i\}_{i=1}^{\infty}$ be any bounded sequence in *X*. To show that *T* is compact we need to argue that $\{T(x_i)\}_{i=1}^{\infty}$ has a convergent subsequence in *Y*. Since the inclusion $X \subseteq \mathbb{C}^{\mathbb{N}}$ is continuous, the sequence $\{x_i\}_{i=1}^{\infty}$ is also bounded in the Fréchet-Montel space $\mathbb{C}^{\mathbb{N}}$. Hence, there is a subsequence $u_j := x_{i_j}$, for $j \in \mathbb{N}$, of $\{x_i\}_{i=1}^{\infty}$ and $x \in \mathbb{C}^{\mathbb{N}}$ such that lim_{*j*→∞} $u_j = x$ in $\mathbb{C}^{\mathbb{N}}$. Suppose that $\{T(u_j)\}_{j=1}^{\infty}$ is not convergent in *Y*. Then ${T(u_j)}_{j=1}^{\infty}$ cannot be a Cauchy sequence in *Y* and hence, there exists $a > 0$ such that, for every $j \in \mathbb{N}$, there exist $k_j, l_j \in \mathbb{N}$ with $j < k_j < l_j$ such that $\|T(u_{k_j}) - T(u_{l_j})\|_Y \ge a$ *. Via this inequality we can choose for <i>j* = 1 natural numbers $1 < k_1 < l_1$, then for $j := 1 + l_1$ natural numbers $1 + l_1 < k_2 < l_2$ and so on, such that $1 < k_1 < l_1 < k_2 < l_2 < k_3 < l_3 \ldots$ and, for these natural numbers ${k_n, l_n}_{n=1}^{\infty}$, we have

$$
||T(u_{k_n}) - T(u_{l_n})||_Y \ge a, \quad n \in \mathbb{N}.
$$
 (2.3)

Then $z_n := u_{k_n} - u_{l_n}$, for $n \in \mathbb{N}$, is a bounded sequence in *X*. Since $\lim_{j \to \infty} u_j = x$ in $\mathbb{C}^{\mathbb{N}}$, it follows that $\lim_{n\to\infty}z_n=0$ in $\mathbb{C}^{\mathbb{N}}$. By property (K) , $\lim_{n\to\infty}T(z_n)=$ 0 in *Y*, that is, $\lim_{n\to\infty}(T(u_{k_n})-T(u_{l_n}))=0$ in *Y* which contradicts (2.3). Hence, $\{T(u_j)\}_{j=1}^{\infty}$ does converge in *Y* and is a subsequence of $\{T(x_i)\}_{i=1}^{\infty}$. The compactness of T is thereby verified.

Proposition 2.2. Let $1 < p \le q < \infty$ and $a \in M_{p,q}$. Then the continuous $multiplier\ operator\ M_{p,q}^a: ces(p) \longrightarrow ces(q) \ is\ compact\ if\ and\ only\ if\ (a_nn^{\frac{1}{q}-\frac{1}{p}})_n \in$ *c*0*.*

Proof. Suppose first that $w = (w_n)_n := (a_n n^{\frac{1}{q} - \frac{1}{p}})_n \in c_0$. Define the element $w_N := (w_1, \ldots, w_N, 0, 0, \ldots)$ for each $N \in \mathbb{N}$ in which case $(w - w_N) \in \ell_\infty$. So, by (2.1), $||M_p^w - M_p^{w_N}||_{op} = ||M_p^{w-w_N}||_{op} \le ||w - w_N||_{\infty}$. Since $w \in c_0$, it follows that $\lim_{N\to\infty} ||w - w_N||_{\infty} = 0$ and hence, $M_p^w : ces(p) \longrightarrow ces(p)$ is *compact* as each $M_p^{w_N}$, for $N \in \mathbb{N}$, is a finite rank operator. Define $v_n := n^{\frac{1}{p} - \frac{1}{q}}$, for $n \in \mathbb{N}$, in which case $v := (v_n)_n \in \mathcal{M}_{p,q}$ by Bennett's multiplier criterion mentioned above, that is, $M_{p,q}^v : ces(p) \longrightarrow ces(q)$ is *continuous*. Since $M_{p,q}^a = M_{p,q}^v M_p^w$, it follows that $M_{p,q}^a$ is compact.

Conversely, suppose that $M_{p,q}^a$ is a compact operator. According to (1.2), the sequence $f_j := j^{1/p'} e_j$, for $j \in \mathbb{N}$, is bounded in $ces(p)$. Clearly $\{f_j\}_{j=1}^{\infty}$ converges to 0 in the Fréchet space $\mathbb{C}^{\mathbb{N}}$. Moreover, $M_{p,q}^a(f_j) = j^{1/p'} a_j e_j$, for $j \in \mathbb{N}$, and $M_{p,q}^a(f_j) \longrightarrow 0$ in $\mathbb{C}^{\mathbb{N}}$ for $j \longrightarrow \infty$ (as the multiplier operator $M^a: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ given by $x \mapsto ax$ is continuous). Applying Lemma 2.1 to the setting $X :=$ $ces(p), Y := ces(q)$ and the continuous multiplier operator $T = M^a : \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ (whose restriction to *X* is $M_{p,q}^a$), it follows that $\{M_{p,q}^a(f_j)\}_{j=1}^\infty$ actually converges to 0 in $ces(q)$, that is, $\lim_{j\to\infty} j^{1/p'}|a_j| \cdot ||e_j||_{ces(q)} = \lim_{j\to\infty} ||j^{1/p'}a_je_j||_{ces(q)} = 0.$ On the other hand, (1.2) implies that $A_q \leq j^{1/p'} ||e_j||_{ces(q)} \leq B_q$ for $j \in \mathbb{N}$. It follows that $\lim_{j\to\infty} j^{1/p'} |a_j| / j^{1/q'} = 0$. Since $\frac{1}{p'} - \frac{1}{q'}$ $\frac{1}{q'} = \frac{1}{q} - \frac{1}{p}$ $\frac{1}{p}$ we can conclude that $(a_n n^{\frac{1}{q} - \frac{1}{p}})$ $\frac{1}{p}$ $\frac{1}{p}$ \in *c*₀.

For the case when $p = q$ and $a \in \mathcal{M}_p = \ell_{\infty}$, Proposition 2.2 implies that the multiplier operator $\overrightarrow{M}_a^p : \overrightarrow{ces}(p) \longrightarrow \overrightarrow{ces}(p)$ is compact if and only if $a \in c_0$.

To treat the cases when $p > q$ we recall, for each $r > 1$, the Banach space

$$
d(r) := \{ x \in \mathbb{C}^{\mathbb{N}} : ||x||_{d(r)} := ||\widehat{x}||_{r} < \infty \},\
$$

where $\hat{x} = (\hat{x}_n)_n := (\sup_{k \ge n} |x_k|)_n$ and $\|\hat{x}\|_r$ is its norm in ℓ_r , [3, pp.3-4].

Lemma 2.3. Let 1 < *r* < ∞ and $x \in d(r)$. Then $\lim_{N \to \infty} ||x - x^{(N)}||_{d(r)} = 0$, $where \; x^{(N)} := (x_1, \ldots, x_N, 0, 0, \ldots) \; for \; each \; N \in \mathbb{N}.$

Proof. Given $N \in \mathbb{N}$ observe that $x - x^{(N)} = (0, \ldots, 0, x_{N+1}, x_{N+2}, \ldots)$ and hence, $(x - x^{(N)})^{\frown} = (\hat{x}_{N+1}, \dots, \hat{x}_{N+1}, \hat{x}_{N+2}, \dots)$ where the first $(N+1)$ -coordinates are constantly \widehat{x}_{N+1} . It follows that

$$
||x - x^{(N)}||_{d(r)}^r = (N+1)(\widehat{x}_{N+1})^r + \sum_{n=N+2}^{\infty} (\widehat{x}_n)^r, \quad N \in \mathbb{N}.
$$
 (2.4)

Since $((\hat{x}_n)^r)_n$ is a decreasing sequence of non-negative terms which belongs to ℓ_1 ,

it is alsociated that $\lim_{n \to \infty} \alpha(\hat{x})^r = 0$. It is 2.2 Theorem 11, Let $\epsilon > 0$. Change it is classical that $\lim_{n\to\infty} n(\hat{x}_n)^r = 0$, [14, § 3.3 Theorem 1]. Let $\epsilon > 0$. Choose *K* \in N such that $n(\widehat{x}_n)^r \leq \frac{\epsilon^r}{2}$ $\frac{\epsilon^r}{2}$ and $\sum_{n=K}^{\infty} (\hat{x}_n)^r < \frac{\epsilon^r}{2}$ $\frac{\varepsilon'}{2}$ for all $n \geq K$. It follows from (2.4) that $||x - x^{(N)}||_{d(r)}^r < \epsilon^r$ for all $N \geq K$. The proof is thereby complete. □

Let $1 < q < p < \infty$ and choose *r* according to $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$ $\frac{1}{p}$. Then it follows from table 32 on p.70 of [3] that

$$
\mathcal{M}_{p,q} = d(r). \tag{2.5}
$$

Lemma 2.4. Let $1 < q < p < \infty$ and r satisfy $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$ $\frac{1}{p}$ *. Then there exists a constant* $D_{p,q} > 0$ *such that*

$$
||M_{p,q}^a||_{op} \le D_{p,q}||a||_{d(r)}, \quad a \in \mathcal{M}_{p,q} = d(r).
$$

Proof. For Banach spaces X, Y let $\mathcal{L}(X, Y)$ denote the Banach space of all continuous linear operators from *X* into *Y*, equipped with the operator norm $\|\cdot\|_{op}$. According to (2.5) the linear map $\Phi : d(r) \longrightarrow \mathcal{L}(ces(p), ces(q))$ specified by $\Phi(a) := M_{p,q}^a$ is well defined. To establish the existence of $D_{p,q}$ it suffices to show that Φ has closed graph. This is a standard argument after noting that convergence of a sequence in $d(r)$ implies its coordinatewise convergence.

The following result shows, for $p > q > 1$, that every multiplier operator $M_{p,q}^a$ for $a \in \mathcal{M}_{p,q}$ is compact.

Proposition 2.5. Let $p > q > 1$. For $a \in \mathbb{C}^{\mathbb{N}}$ the following assertions are equivalent.

- (i) $a \in M_{p,q}$, that is, $M_{p,q}^a : ces(p) \longrightarrow ces(q)$ is continuous.
- (ii) $M_{p,q}^a : ces(p) \longrightarrow ces(q)$ is compact.
- (iii) $a \in d(r)$ where $\frac{1}{r} = \frac{1}{q} \frac{1}{p}$ $\frac{1}{p}$.

Proof. (i) \iff (iii) is precisely the characterization (2.5) of Bennett.

(ii) =*⇒* (i) is clear as every compact linear operator is continuous.

(iii) \implies (ii). Let $a^{(N)} := (a_1, \ldots, a_N, 0, 0, \ldots)$ for $N \in \mathbb{N}$. Then $a - a^{(N)} \in d(r)$ for $N \in \mathbb{N}$ and $\lim_{N \to \infty} \|a - a^{(N)}\|_{d(r)} = 0$; see Lemma 2.3. By (2.5) the operators $M_{p,q}^a, M_{p,q}^{a^{(N)}}$ and $M_{p,q}^{a-a^{(N)}} = M_{p,q}^a - M_{p,q}^{a^{(N)}}$ all belong to $\mathcal{L}(ces(p),ces(q)).$ Lemma 2.4 yields that $||M_{p,q}^a - M_{p,q}^{a^{(N)}}||_{op} \le D_{p,q}||a - a^{(N)}||_{d(r)}$, for $N \in \mathbb{N}$. Hence, $M_{p,q}^a$ is compact as each operator $M_{p,q}^{a^{(N)}}$ has finite rank.

We now consider further properties of multiplier operators for the case when $p = q$. The space $\mathcal{L}(ces(p), ces(p))$ is simply denoted by $\mathcal{L}(ces(p))$.

Lemma 2.6. Let $1 < p < \infty$. Then

$$
||M_p^a||_{op} = ||a||_{\infty}, \quad a \in \ell_{\infty} = \mathcal{M}_p.
$$
 (2.6)

Proof. Just prior to Proposition 2.2 it was noted that $||M_p^a||_{op} \le ||a||_{\infty}$. On the other hand, since $M_p^a(e_j) = a_j e_j$ for $j \in \mathbb{N}$, it is clear that the *point spectrum* $\sigma_{pt}(M_p^a)$, consisting of all the eigenvalues of M_p^a , satisfies

$$
a(\mathbb{N}) := \{a_j : j \in \mathbb{N}\} \subseteq \sigma_{pt}(M_p^a) \subseteq \sigma(M_p^a).
$$

Then the spectral radius inequality for operators, [10, Ch. VII, Lemma 3.4], yields

$$
||M_p^a||_{op} \ge r(M_p^a) := \sup\{ |\lambda| : \lambda \in \sigma(M_p^a) \} \ge \sup_{j \in \mathbb{N}} |a_j| = ||a||_{\infty}.
$$

The spectrum of multiplier operators in $\mathcal{L}(ces(p))$ can now be determined.

Proposition 2.7. Let $1 < p < \infty$. Then

$$
\sigma(M_p^a) = \overline{a(\mathbb{N})} = \overline{\{a_j : j \in \mathbb{N}\}}, \quad a \in \mathcal{M}_p.
$$
 (2.7)

Proof. From the proof of Lemma 2.6 we have $a(\mathbb{N}) \subseteq \sigma_{pt}(M_p^a) \subseteq \sigma(M_p^a)$. Since $\sigma(M_p^a)$ is a closed set in \mathbb{C} , it follows that $\overline{a(\mathbb{N})} \subseteq \sigma(M_p^a)$.

Suppose that $\lambda \notin \overline{a(\mathbb{N})}$. Then $b = (b_n)_n$ with $b_n := \frac{1}{\lambda - a_n}$ for $n \in \mathbb{N}$ belongs to $\ell_{\infty} = \mathcal{M}_p$. Using the formula $\lambda I - M_p^a = M_p^{\lambda 1-a}$ (with *I* the identity operator

 \Box

on $ces(p)$ and $\mathbf{1} := (1, 1, 1, ...)$ it is routine to check that $(\lambda I - M_p^a)M_p^b = I =$ $M_p^b(\lambda I - M_p^a)$. Hence, $\lambda I - M_p^a$ is invertible in $\mathcal{L}(ces(p))$ and so λ lies in the resolvent set of M_p^a . This establishes the inclusion $\sigma(M_p^a) \subseteq \overline{a(\mathbb{N})}$.

For a Banach space X, an operator $T \in \mathcal{L}(X) := \mathcal{L}(X,X)$ is mean ergodic (resp. uniformly mean ergodic) if its sequence of Cesàro averages

$$
T_{[n]} := \frac{1}{n} \sum_{m=1}^{n} T^m, \quad n \in \mathbb{N},
$$
\n(2.8)

converges to some operator $P \in \mathcal{L}(X)$ in the strong operator topology τ_s , i.e., $\lim_{n\to\infty} T_{[n]}(x) = P(x)$ for each $x \in X$, [10, Ch. VIII] (resp. in the operator norm topology τ_b). According to [10, Ch. VIII, Corollary 5.2] there then exists the direct sum decomposition

$$
X = \text{Ker}(I - T) \oplus \overline{(I - T)(X)}.
$$
\n(2.9)

Moreover, we have the identities $(I-T)T_{[n]} = T_{[n]}(I-T) = \frac{1}{n}(T-T^{n+1}),$ for $n \in$ \mathbb{N} , and, setting $T_{[0]} := I$, that

$$
\frac{1}{n}T^n = T_{[n]} - \frac{(n-1)}{n}T_{[n-1]}, \quad n \in \mathbb{N}.
$$
\n(2.10)

An operator $T \in \mathcal{L}(X)$ is called *power bounded* if $\sup_{n \in \mathbb{N}} ||T^n||_{op} < \infty$. In this case it is clear that necessarily $\lim_{n\to\infty} \frac{||T^n||_{op}}{n} = 0$. A standard reference for mean ergodic operators is [15]. Finally, define $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ *.*

Proposition 2.8. Let $1 < p < \infty$ and $a \in \mathcal{M}_p = \ell_\infty$. The following statements are equivalent.

- $(|i)$ ||a||∞ ≤ 1*.*
- (ii) The multiplier operator $M_p^a \in \mathcal{L}(ces(p))$ is power bounded.
- (iii) The multiplier operator $M_p^a \in \mathcal{L}(ces(p))$ is mean ergodic.
- (iv) The spectrum $\sigma(M_p^a) \subseteq \overline{\mathbb{D}}$.
- (v) $\lim_{n\to\infty} \frac{(M_p^a)^n}{n} = 0$ relative to τ_s in $\mathcal{L}(ces(p)).$

Proof. (i) \implies (ii). Since \mathcal{M}_p is an algebra under coordinatewise multiplication in $\mathbb{C}^{\mathbb{N}}$ we have $(M_p^a)^n = M_p^{a^n}$ (where $a^n := (a_j^n)_j$ for $a = (a_j)_j$) and so, via Lemma $2.6, \|(M_p^a)^n\|_{op} = \|M_p^{a^n}\|_{op} = \|a^n\|_{\infty} \le 1, \quad n \in \mathbb{N}.$

(ii) \Rightarrow (iii). Power bounded operators in reflexive Banach spaces are always mean ergodic, [19].

 $(i) \implies (iv)$. Since $||a||_{\infty} = \sup\{|\lambda| : \lambda \in a(\mathbb{N})\} \leq 1$, (2.7) implies $\sigma(M_p^a) \subseteq \overline{\mathbb{D}}$. $(iv) \implies (i)$. Clear from (2.7) .

(iii) \Rightarrow (i). Suppose that $||a||_{\infty} > 1$. Then there exists $k \in \mathbb{N}$ such that $|a_k| > 1$. Since $(M_p^a)^n(e_k) = a_k^n e_k$ for $n \in \mathbb{N}$, it follows that

$$
\frac{\|(M_p^a)^n(e_k)\|_{ces(p)}}{n} = \frac{|a_k|^n}{n} \|e_k\|_{ces(p)}, \quad n \in \mathbb{N},
$$

with $|a_k| > 1$. Hence, the sequence $\left\{\frac{(M_p^a)^n}{n}\right\}$ $\binom{p}{p}$ ⁿ² $\binom{p}{n}$ </sup> annot converge to 0 ∈ *L*(*ces*(*p*)) in the topology τ_s , thereby violating a necessary condition for M_p^a to be mean ergodic (see (2.10)); contradiction! So, $||a||_{\infty} \leq 1$.

(iii) \implies (v). This follows from (2.10). $(v) \implies$ (i). See the proof of (iii) \implies (i).

In view of Proposition 2.8 we may assume that $||a||_{\infty} \le 1$ and M_p^a is power bounded whenever it is mean ergodic. Then $\lim_{n\to\infty} \frac{\| (M_p^a)^n \|_{op}}{n} = 0$ and so, by a well known result of Lin, [17], the *uniform* mean ergodicity of M_p^a is equivalent to the range $(I - M_p^a)(ces(p)) = (M_p^{1-a})(ces(p))$ of $I - M_p^a$ being a *closed* subspace of *ces*(*p*)*.*

Given $w \in \mathbb{C}^{\mathbb{N}}$ define its *support* by $S(w) := \{n \in \mathbb{N} : w_n \neq 0\}$ in which case $w\chi_{S(w)} = w$ as elements of $\mathbb{C}^{\mathbb{N}}$. If $w \in \ell_{\infty}$, then for each $1 < p < \infty$ we have

$$
M_p^w(ces(p)) := \{ wx : x \in ces(p) \} = \{ w \chi_{S(w)} x : x \in ces(p) \}. \tag{2.11}
$$

We will also require the *closed* subspace of $ces(p)$ which is the range of the continuous projection operator $M_p^{\chi_{S(w)}}$, i.e.,

$$
X_{w,p} := \{ \chi_{S(w)} x : x \in ces(p) \} = M_p^{\chi_{S(w)}}(ces(p)).
$$
\n(2.12)

It is routine to check that $X_{w,p}$ is M_p^w -invariant. Let $\tilde{M}_p^w : X_{w,p} \longrightarrow X_{w,p}$ be the restriction of M_p^w so that $\tilde{M}_p^w \in \mathcal{L}(X_{w,p})$. Since $w_n \neq 0$ for each $n \in S(w)$, it follows that \tilde{M}_p^w is *injective*. Hence, \tilde{M}_p^w is a vector space isomorphism of $X_{w,p}$ onto its range $\tilde{M}_p^w(X_{w,p})$ in $X_{w,p}$. By (2.11) and (2.12) it is clear that $\tilde{M}_p^w(X_{w,p}) = M_p^w(\text{ces}(p))$ whenever $M_p^w(\text{ces}(p))$ is closed in $\text{ces}(p)$.

Lemma 2.9. Let $w \in \ell_{\infty}$ and $1 < p < \infty$. If the range $M_p^w(ces(p))$ is closed in $ces(p)$ *, then* $0 \notin (w \chi_{S(w)})(\mathbb{N})$ *.*

Proof. By the discussion prior to Lemma 2.9, $\tilde{M}_p^w(X_{w,p})$ is a Banach space for the norm $\|\cdot\|_{ces(p)}$ restricted to the closed subspace $M_p^w(ces(p)) = \tilde{M}_p^w(X_{w,p})$ of *ces*(*p*). Via the open mapping theorem $\tilde{M}_{p}^{w}: X_{w,p} \longrightarrow X_{w,p}$ is then a Banach space isomorphism. So, there exists $T \in \mathcal{L}(X_{w,p})$ satisfying

$$
\tilde{M}_p^w T = I = T \tilde{M}_p^w.
$$
\n(2.13)

For each $n \in S(w)$ the basis vector $e_n \in X_{w,p}$. Define $y^{(n)} := T(e_n)$ for $n \in S(w)$. It follows from (2.13) that $e_n = wy^{(n)}$. Since the *k*-th coordinate of e_n is 0 for $k \in \mathbb{N}\backslash\{n\}$, the same is true of $wy^{(n)}$. Accordingly, $e_n = w_n y^{(n)}$ and so $T(e_n) = y^{(n)} = \frac{1}{w_n}$ $\frac{1}{w_n}e_n$ for each $n \in S(w)$. But, $\{e_n : n \in S(w)\}$ is a basis for $X_{w,p}$ and $T \in \mathcal{L}(X_{w,p})$ from which we can deduce that $T(x) = w^{-1}x$ for all $x \in X_{w,p}$ $(w$ ith $w^{-1} := (\frac{1}{w_n})_{n \in S(w)}$. Setting $v := w^{-1} \chi_{S(w)} \in \mathbb{C}^{\mathbb{N}}$, it follows that

$$
vx = T(\chi_{S(w)}x) = TM_p^{\chi_{S(w)}}(x) = (jTM_p^{\chi_{S(w)}})(x),
$$
\n(2.14)

for each $x \in ces(p)$, with $j: X_{w,p} \longrightarrow ces(p)$ being the natural inclusion map and (2.14) holding as equalities in $\mathbb{C}^{\mathbb{N}}$. But, $jTM_p^{\chi_{S(w)}} \in \mathcal{L}(ces(p))$ if we interpret $M_p^{\chi_{S(w)}}$: $ces(p) \longrightarrow X_{w,p}$ and hence, (2.14) actually holds in $ces(p)$. That is, $M_v = jTM_p^{\chi_{S(w)}}$ belongs to $\mathcal{L}(ces(p))$ which means that $v \in \mathcal{M}_p$ or, equivalently, that $v \in \ell_{\infty}$. This implies the desired conclusion.

Proposition 2.10. Let $1 < p < \infty$ and $a \in M_p = \ell_\infty$. The following assertions are equivalent.

- (i) M_p^a is uniformly mean ergodic.
- \langle ii) $||a||_{\infty} \leq 1$ and $1 \notin \overline{a(\mathbb{N})\backslash\{1\}}$.

Proof. (i) \implies (ii). By the discussion immediately after Proposition 2.8 we know that (i) implies $||a||_{\infty} \leq 1$ and the range of $I - M_p^a = M_p^{1-a}$ is closed in $ces(p)$. Then $w := 1 - a$ satisfies the hypothesis of Lemma 2.9. Accordingly, $0 \notin ((1 - a)\chi_{S(1 - a)}(\mathbb{N})$ which is equivalent to $1 \notin a(\mathbb{N})\backslash\{1\}$.

(ii) \implies (i). The condition $1 \notin \overline{a(N)\setminus\{1\}}$ implies that $u := (1-a)^{-1}\chi_{S(1-a)}$ belongs to ℓ_{∞} . In particular, $M_p^u \in \mathcal{L}(ces(p))$. Moreover, $w := (\mathbf{1} - a) \in \ell_{\infty}$ satisfies (in $\mathcal{L}(ces(p)))$) the identity $M_p^w M_p^u = M_p^{\chi_{S(w)}}$. It follows from (2.11) that $M_p^w(ces(p)) \subseteq M_p^{\chi_{S(w)}}(ces(p)) = X_{w,p}$ (see (2.12)). It is routine to verify the reverse inclusion and so actually $M_p^w(ces(p)) = X_{w,p}$. In particular, the range of $M_p^{1-a} = I - M_p^a$ is *closed* in $ces(p)$. Since $||a||_{\infty} \le 1$ implies that M_p^a is power bounded (cf. Proposition 2.8), it follows that $\lim_{n\to\infty} \frac{\|(M_p^a)^n\|_{op}}{n} = 0$. Hence, the criterion of Lin can be applied to conclude that M_p^a is uniformly mean ergodic. \Box

An example of a multiplier operator which is mean ergodic but not uniformly ergodic is M_p^a with $a := (1 - \frac{1}{n})$ $\frac{1}{n}$)_{*n*}.

In (2.9), with $X := ces(p)$ and $T := M_p^a$ (for $||a||_{\infty} \le 1$), note that

 $\text{Ker}(I - M_p^a) = \{x \in ces(p) : x_n = 0 \text{ for all } n \in \mathbb{N} \text{ with } a_n \neq 1\}.$

Concerning the linear dynamics of a continuous linear operator *T* : *X −→ X* defined on a separable, locally convex Hausdorff space *X*, recall that *T* is hypercyclic if there exists $x \in X$ whose orbit $\{T^n x : n \in \mathbb{N}_0 := \{0\} \cup \mathbb{N}\}\$ is dense in *X*. If, for some $x \in X$, the projective orbit $\{\lambda T^n x : \lambda \in \mathbb{C}, n \in \mathbb{N}_0\}$ is dense in X , then T is called *supercyclic*. Since this projective orbit coincides with *∪*[∞]_{*n*=0}*T*^{*n*}(span{*x*}) we see that supercyclic is the same as 1-supercyclic as defined in [4]. Hypercyclicity always implies supercyclicity but not conversely.

Lemma 2.11. Let $a = (a_n)_n \in \mathbb{C}^{\mathbb{N}}$ and define the multiplier operator M^a : $\mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ by $M^a(x) := ax$ for $x \in \mathbb{C}^{\mathbb{N}}$. Then M^a is not supercyclic in the Fréchet space C N*.*

Proof. The continuous dual space $(\mathbb{C}^{\mathbb{N}})'$ of $\mathbb{C}^{\mathbb{N}}$ is the space φ . Clearly M^a is $\text{continuous on } \mathbb{C}^\mathbb{N} \text{ and its dual operator } (M^a)' : \varphi \longrightarrow \varphi \text{ is given by } (M^a)'(y) = ay$ for $y \in \varphi$. Moreover, it follows from $(M^a)'(e_j) = a_j e_j$ for $j \in \mathbb{N}$ that each canonical basis vector $e_j \in \varphi$ is an eigenvector of $(M^a)'$. According to Theorem 2.1 of [4] the operator $M^a \in \mathcal{L}(\mathbb{C}^{\mathbb{N}})$ cannot be supercyclic.

Given $1 < p < \infty$ and $a \in \mathbb{C}^{\mathbb{N}}$ the multiplier operator $M^a: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ maps ℓ_p into ℓ_p if and only if $a \in \ell_\infty$, [3, table 1, p.69]. Denote this restricted operator by $M_{\{p\}}^a: \ell_p \longrightarrow \ell_p$.

Proposition 2.12. Let $1 < p < \infty$ and $a \in \ell_{\infty}$.

- (i) The multiplier operator $M_{\{p\}}^a \in \mathcal{L}(\ell_p)$ is not supercyclic.
- (ii) The multiplier operator $M_p^{\tilde{a}} \in \mathcal{L}(ces(p))$ is not supercyclic.

Proof. (i) Since ℓ_p is dense in $\mathbb{C}^{\mathbb{N}}$ (as it contains φ) and the natural inclusion $\ell_p \to \mathbb{C}^{\mathbb{N}}$ is continuous, the supercyclicity of $M_{\{p\}}^a \in \mathcal{L}(\ell_p)$ would imply the

supercyclicity of $M^a \in \mathcal{L}(\mathbb{C}^{\mathbb{N}})$, which is not the case (cf. Lemma 2.11). Hence, $M_{\{p\}}^a$ is not supercyclic.

(ii) Since $ces(p)$ is dense in $\mathbb{C}^{\mathbb{N}}$ and the inclusion $ces(p) \hookrightarrow \mathbb{C}^{\mathbb{N}}$ is continuous, the analogous argument to that of part (i) applies. \Box

3. The cesàro operators

Consider a pair $1 < p, q < \infty$. Denote by $C_{c(p),c(q)}$ (resp. $C_{c(p),q}$; $C_{p,c(q)}$; $C_{p,q}$) the Cesàro operator *C* when it acts from $ces(p)$ into $ces(q)$ (resp. $ces(p)$ into ℓ_q ; ℓ_p into $ces(q)$; ℓ_p into ℓ_q), whenever this operator exists. The closed graph theorem then ensures that this operator is continuous. We use the analogous notation for the natural inclusion maps $i_{c(p),c(q)}$; $i_{c(p),q}$; $i_{p,c(q)}$; $i_{p,q}$ whenever they exist. The main aim of this section is to identify all pairs p, q for which these inclusion operators and Cesàro operators do exist and, for such pairs, to determine whether or not the operator is *compact*. For each $1 < p < \infty$, the spectrum of $C_{p,p} \in \mathcal{L}(\ell_p)$ is well known, [16, Theorem 2], [20, Theorem 4], and coincides with the spectrum of $C_{c(p),c(p)}$ ∈ $\mathcal{L}(ces(p));$ see (1.6).

We begin with a preliminary result.

Lemma 3.1. Let $1 < p < \infty$.

- (i) The operator $C_{c(p),p}: ces(p) \longrightarrow \ell_p$ exists and satisfies $||C_{c(p),p}||_{op} \leq 1$.
- (ii) The largest amongst the class of spaces ℓ_r , for $1 \leq r < \infty$, which satisfy $\ell_r \subseteq ces(p)$ is the space ℓ_p .

Proof. (i) Follows from the discussion immediately prior to Proposition 1.1. (ii) See Remark 2.2(iii) of [6]. \Box

Proposition 3.2. Let $1 < p, q < \infty$ be an arbitrary pair.

- (i) The inclusion map $i_{p,q}: \ell_p \longrightarrow \ell_q$ exists if and only if $p \leq q$, in which $case \, ||i_{p,q}||_{op} = 1.$
- (ii) The inclusion map $i_{p,c(q)}$: $\ell_p \longrightarrow ces(q)$ exists if and only if $p \leq q$, in $which \; case \; ||i_{p,c(q)}||_{op} \leq q'.$
- (iii) The inclusion map $i_{c(p), c(q)} : ces(p) \longrightarrow ces(q)$ exists if and only if $p \leq q$, *in which case* $||i_{c(p), c(q)}||_{op}$ ≤ 1*.*
- (iv) $ces(p) \nsubseteq \ell_q$ for all choices of $1 < p, q < \infty$.

Proof. (i) This is well known.

(ii) Lemma 3.1(ii) shows that $\ell_p \not\subseteq ces(q)$ if $p > q$.

Let $p \leq q$. For $x \in \ell_p$ we have $||i_{p,c(q)}(x)||_{ces(q)} = ||x||_{ces(q)}$ with

$$
||x||_{ces(q)} := ||C(|x|)||_q \leq ||C_{q,q}||_{op} ||x||_q \leq ||C_{q,q}||_{op} ||x||_p,
$$

where the last inequality follows via part (i). Since $||C_{q,q}||_{op} = p'$, [13, Theorem 326], the desired conclusion is clear.

(iii) If $p > q$, then $ces(p) \not\subseteq ces(q)$. Indeed, by Lemma 3.1(ii) there exists $y \in \ell_p$ with $y \notin ces(q)$. By part (ii), $y \in ces(p)$.

Let $p \leq q$. Fix $x \in ces(p)$. By Lemma 3.1(i) we have $C(|x|) \in \ell_p$ and hence, by part (i), $C(|x|) \in \ell_q$. Accordingly,

$$
||x||_{ces(q)} := ||C(|x|)||_q \le ||C(|x|)||_p = ||x||_{ces(p)}.
$$

This shows that $i_{c(p),c(q)}$ exists and $||i_{c(p),c(q)}||_{op} \leq 1$.

(iv) For arbitrary $1 < p < \infty$ there exists $x \in ces(p)$ with $x \notin \ell_{\infty}$, [6, Remark] 2.2(ii)]. Then also $x \notin \ell_q$ for every $1 < q < \infty$.

If $1 < p < q < \infty$, then the inclusion $ces(p) \subseteq ces(q)$ as guaranteed by Proposition 3.2(iii) is actually *proper*. Indeed, by Lemma 3.1(ii) there exists *x* ∈ ℓ_q with *x* ∉ *ces*(*p*). Then *y* := *C*(|*x*|) ∈ *ces*(*q*); see Proposition 3.2(ii). But $x \notin ces(p)$ implies $|x| \notin ces(p)$ and so $y \notin ces(p)$; see Proposition 1.1. That $ces(p) \subsetneq ces(q)$ also follows from the next result.

Proposition 3.3. Let $1 < p, q < \infty$ with $p \neq q$. Then $ces(p)$ is not Banach space *isomorphic to* $ces(q)$ *.*

Proof. According to (1.3) the closed (sectional) subspace

Y := { $x \in ces(p) : x_k = 0$ unless $k = 2^j$ for some $j = 0, 1, 2, ...$ }

is isomorphic to a weighted ℓ_p -space (as $||x||_{[p]} = (\sum_{j=0}^{\infty} 2^{j(1-p)} |x_{2j}|^p)^{1/p}$ for $x \in$ *Y*) and hence, also isomorphic to ℓ_p . Suppose that $ces(p)$ is isomorphic to $ces(q)$. Then ℓ_p is isomorphic to a closed subspace of $ces(q)$. Since $ces(q)$ is isomorphic to a closed subspace of the infinite ℓ_q -sum $\ell_q(E_n)$ with each $E_n, n \in \mathbb{N}$, a finite dimensional space, [21, Theorem 1], it follows that ℓ_p is isomorphic to a closed subspace of $\ell_q(E_n)$. But, $X := \ell_p$ has a shrinking basis (it is reflexive) and so is isomorphic to $\ell_q(D_k)$ with each $D_k, k \in \mathbb{N}$, a finite dimensional space, [18, Theorem 2.d.1]. Since ℓ_q is clearly isomorphic to a closed (sectional) subspace of $\ell_q(D_k)$, it follows that ℓ_q is isomorphic to a closed subspace of ℓ_p with $p \neq q$, which is not the case, [18, p.54]. So, $ces(p)$ is not isomorphic to $ces(q)$.

Via Proposition 3.2 we now determine which inclusion maps are compact.

Proposition 3.4. Let $1 < p \leq q < \infty$ be arbitrary.

- (i) The inclusion $i_{p,q}: \ell_p \longrightarrow \ell_q$ is never compact.
- (ii) The inclusion $i_{c(p), c(q)} : ces(p) \longrightarrow ces(q)$ is compact if and only if $p < q$.
- (iii) The inclusion $i_{p,c(q)}$: $\ell_p \longrightarrow ces(q)$ is compact if and only if $p < q$.

Proof. (i) The image under $i_{p,q}$ of the unit basis vectors $\{e_n : n \in \mathbb{N}\}\subseteq \ell_p$ has no Cauchy subsequence (hence, no convergent subsequence) in *ℓ^q* because *∥e*_{*n*} − *e*_{*m*} $|$ </sup> q = 2^{1/q} for all *n* ≠ *m*.

(ii) Since $i_{c(p),c(p)}$ is the identity operator on $ces(p)$ it is surely not compact. So, assume that $p < q$. Then the constant element $a := \mathbf{1}$ satisfies $(a_n n^{\frac{1}{q} - \frac{1}{p}})_n =$ $(n^{\frac{1}{q}-\frac{1}{p}})_{n} \in c_{0}$ and hence, by Proposition 2.2 the multiplier operator $M_{p,q}^{\mathbf{1}} \in$ $\mathcal{L}(ces(p), ces(q))$ is compact. But, $M_{p,q}^1$ is precisely the inclusion operator $i_{c(p), c(q)}$.

(iii) Since $C_{p,p}$ is not compact (by (1.6) its spectrum is an uncountable set) and $C_{p,p} = C_{c(p),p} i_{p,c(p)}$, also $i_{p,c(p)}$ fails to be compact. So, assume that $p < q$. Then the factorization $i_{p,c(q)} = i_{c(p),c(q)} i_{p,c(p)}$ together with the compactness of $i_{c(p),c(q)}$ (see part (ii)) shows that $i_{p,c(q)}$ is compact.

Now that the continuity and compactness of the various inclusion operators are completely determined we can do the same for the Cesàro operators *C* : *X −→ Y* where $X, Y \in \{\ell_p, \text{ces}(q) : p, q \in (1, \infty)\}\$. We begin with continuity.

Proposition 3.5. Let $1 < p, q < \infty$ be an arbitrary pair.

(i) $C_{p,q}: \ell_p \longrightarrow \ell_q$ exists if and only if $p \leq q$, in which case $||C_{p,q}||_{op} \leq p'$.

- (ii) $C_{p,c(q)}: \ell_p \longrightarrow ces(q) \text{ exists if and only if } p \leq q, \text{ in which case } ||C_{p,c(q)}||_{op} \leq$ $p'q'.$
- (iii) $C_{c(p),c(q)}$: $ces(p) \longrightarrow ces(q)$ exists if and only if $p \leq q$, in which case *∣* $|C_{c(p),c(q)}|$ _{*op*} ≤ *q*'.
- (iv) $C_{c(p),q}$: $ces(p)$ → ℓ_q exists if and only if $p ≤ q$, in which case $||C_{c(p),q}||_{op} ≤$ 1*.*

Proof. (ii) Let $p > q$. According to Lemma 3.1(ii) there exists $x \in \ell_p \setminus ces(q)$, in which case also $|x| \in \ell_p \setminus ces(q)$. If $C(|x|) \in ces(q)$, then Proposition 1.1 implies that also $|x| \in ces(q)$; contradiction. So, $|x| \in \ell_p$ but $C(|x|) \notin ces(q)$, i.e., " $C_{p,c(q)}$ " does not exist.

Suppose then that $p \leq q$. Then $C_{p,p} \in \mathcal{L}(\ell_p)$ exists with $||C_{p,p}||_{op} = p'$ and *i*_{*p*,*c*(*q*) : ℓ_p → *ces*(*q*) exists with $||i_{p,c(q)}||_{op} ≤ q'$ (cf. Proposition 3.2(ii)). Hence,} the composition $C_{p,c(q)} = i_{p,c(q)} C_{p,p}$ exists and $||C_{p,c(q)}||_{op} \leq p'q'.$

(i) Let $p > q$. If $C_{p,q}$ exists, then by Proposition 3.2(ii) $C_{p,c(q)} = i_{q,c(q)} C_{p,q}$ also exists. This contradicts part (ii) which was just proved.

So, assume that $p \leq q$. Then $C_{p,p} \in \mathcal{L}(\ell_p)$ exists with $||C_{p,p}||_{op} = p'$ and $i_{p,q}$ exists with $||i_{p,q}||_{op} = 1$ (cf. Proposition 3.2(i)). Hence, $C_{p,q} = i_{p,q} C_{p,p}$ exists and $\|C_{p,q}\|_{op} \leq p'.$

(iii) Let $p > q$. If $C_{c(p),c(q)}$ exists, then by Proposition 3.2(i) also $C_{p,c(q)}$ = $C_{c(p),c(q)}$ $i_{p,c(p)}$ exists. This contradicts part (ii) above.

So, assume that $p \leq q$. Fix $x \in ces(p)$. Then also $|x| \in ces(p)$ and so $C(|x|) \in$ $\ell_p \subseteq \ell_q$; see Lemma 3.1(i) and Proposition 3.2(i). Moreover, $|C(x)| \in \ell_q$ as $|C(x)| \leq C(|x|)$. Hence,

$$
||C(x)||_{ces(q)} := ||C(|C(x)|)||_q \leq ||C_{q,q}||_{op} |||C(x)||_q \leq q'||C(|x|)||_q
$$

$$
\leq q'||C(|x|)||_p = q'||x||_{ces(p)}.
$$

This shows that $C_{c(p),c(q)}$ exists and $||C_{c(p),c(q)}||_{op} \leq q'$.

(iv) Let $p > q$. If $C_{c(p),q}$ exists, then also $C_{c(p),c(q)} = i_{q,c(q)} C_{c(p),q}$ exists (cf. Proposition 3.2(ii)). This contradicts part (iii).

Assume now that $p \leq q$. Since $C_{c(p),p}$ exists with $||C_{c(p),p}||_{op} \leq 1$ (cf. Lemma 3.1(i)) and $i_{p,q}$ exists with $||i_{p,q}||_{op} = 1$ (cf. Proposition 3.2(i)), it follows that the composition $C_{c(p),q} = i_{p,q} C_{c(p),p}$ exists and $||C_{c(p),q}||_{op} \leq 1$.

Concerning the proof of part (iii) of Proposition 3.5 when $p \leq q$, it is also clear from $C_{c(p),c(q)} = i_{c(p),c(q)} C_{c(p),c(p)}$ that $C_{c(p),c(q)}$ exists. However, since $||i_{c(p),c(q)}||_{op} \leq 1$ (cf. Proposition 3.2(iii)) and $||C_{c(p),c(p)}||_{op} = p'$, this approach only yields $||C_{c(p),c(q)}||_{op} \leq p'$ whereas the given proof of (iii) yields $||C_{c(p),c(q)}||_{op} \leq$ q' which is a better estimate when $p < q$.

We now have all the facts needed to prove the main result of this section.

Proposition 3.6. Let $1 < p \leq q < \infty$ be arbitrary.

- (i) The Cesàro operator $C_{p,q}: \ell_p \longrightarrow \ell_q$ is compact if and only if $p < q$.
- (ii) The Cesàro operator $C_{p,c(q)}$: $\ell_p \longrightarrow ces(q)$ is compact if and only if $p < q$.
- (iii) The Cesàro operator $C_{c(p),c(q)}$: $ces(p) \longrightarrow ces(q)$ is compact if and only if *p < q.*
- (iv) The Cesàro operator $C_{c(p),q}: ces(p) \longrightarrow \ell_q$ is compact if and only if $p < q$.

Proof. (i) Since $\sigma(C_{p,p})$ is an uncountable set (see the comments prior to Lemma 3.1), it is clear that $C_{p,p}$ is not compact. So, assume that $p < q$. Since $C_{p,q}$ $C_{c(q),q} i_{p,c(q)}$ with $C_{c(q),q} : ces(q) \longrightarrow \ell_q$ continuous (cf. Lemma 3.1(i)) and $i_{p,c(q)}$: $\ell_p \longrightarrow ces(q)$ compact (by Proposition 3.4(iii)), it follows that $C_{p,q}$ is compact.

(ii) For $p = q$ observe that $(C_{c(p),c(p)})^2 = C_{p,c(p)} C_{c(p),p}$. By (1.6) and the spectral mapping theorem, [10, Ch. VII, Theorem 3.11], we see that

$$
\sigma((C_{c(p),c(p)})^2) = \{\lambda^2 : |\lambda - \frac{p'}{2}| \le \frac{p'}{2}\}\
$$

is an uncountable set and so $(C_{c(p),c(p)})^2$ is not compact. Hence, also $C_{p,c(p)}$ is not compact.

Assume then that $p < q$. Since the inclusion $i_{c(p), c(q)} : ces(p) \longrightarrow ces(q)$ is compact (cf. Proposition 3.4(ii)), it is clear from the factorization $C_{p,c(q)}$ = $i_{c(p),c(q)} C_{p,c(p)}$ that also $C_{p,c(q)}$ is compact.

(iii) For $p = q$ it follows from (1.6) that $\sigma(C_{c(p),c(p)})$ is an uncountable set and so $C_{c(p),c(p)}$ is not compact. Suppose now that $p < q$. Since the inclusion $i_{c(p),c(q)}:ces(p) \longrightarrow ces(q)$ is compact (by Proposition 3.4(ii)), the factorization $C_{c(p),c(q)} = i_{c(p),c(q)} C_{c(p),c(p)}$ shows that $C_{c(p),c(q)}$ is compact.

(iv) For $p = q$ we have $C_{c(p),c(p)} = i_{p,c(p)} C_{c(p),p}$. By part (iii) the operator $C_{c(p),c(p)}$ is not compact and hence, also $C_{c(p),p}$ is not compact.

Assume now that $p < q$. Select any *r* satisfying $p < r < q$, in which case we have $C_{c(p),q} = C_{c(r),q} i_{c(p),c(r)}$ with $C_{c(r),q}$ continuous (by Proposition 3.5(iv)) and $i_{c(p),c(r)}$ compact (via Proposition 3.4(ii)). Hence, also $C_{c(p),q}$ is compact. \square

Our final result concerns the mean ergodicity and linear dynamics of Cesàro operators.

Proposition 3.7. Let $1 < p < \infty$.

- (i) The Cesàro operator $C_{p,p}$: $\ell_p \longrightarrow \ell_p$ is not power bounded, not mean ergodic and not supercyclic.
- (ii) The Cesàro operator $C_{c(p),c(p)}$: $ces(p) \rightarrow ces(p)$ is not power bounded, not mean ergodic and not supercyclic.

Proof. (i) That *Cp,p* is neither power bounded nor mean ergodic is Proposition 4.2 of [1]. It is known that the Cesàro operator $C: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ is not supercyclic, [2, Proposition 4.3]. Since ℓ_p is dense in $\mathbb{C}^{\mathbb{N}}$ and the natural inclusion $\ell_p \subseteq \mathbb{C}^{\mathbb{N}}$ is continuous, the supercyclicity of $C_{p,p}$ in ℓ_p would imply that $C: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ is supercyclic. Hence, $C_{p,p} \in \mathcal{L}(\ell_p)$ is not supercyclic.

(ii) Suppose that $C_{c(p),c(p)}$ is mean ergodic. According to (2.10) we have $\lim_{n\to\infty}\frac{(C_{c(p),c(p)})^n}{n} = 0$ for τ_s in $\mathcal{L}(ces(p))$ and hence, $\sigma(C_{c(p),c(p)}) \subseteq \overline{\mathbb{D}},$ [10, Ch. VIII, Lemma 8.1. This contradicts (1.6). Hence, $C_{c(p),c(p)}$ cannot be mean ergodic. Since power bounded operators in reflexive Banach spaces are always mean ergodic, [19], it follows that $C_{c(p),c(p)}$ is not power bounded. Arguing as in part (i), since $ces(p)$ is dense in $\mathbb{C}^{\mathbb{N}}$ and the inclusion $ces(p) \subseteq \mathbb{C}^{\mathbb{N}}$ is continuous, it follows that $C_{c(p),c(p)}$ is not supercyclic.

Acknowledgements. The research of the first two authors was partially supported by the project MTM2016-76647-P (Spain). The second author thanks the Mathematics Department of the Katholische Universität Eichstätt-Ingolstadt

(Germany) for its support and hospitality during his research visit in the period September 2016 - July 2017.

REFERENCES

- [1] A.A. Albanese, J. Bonet, W.J. Ricker, Convergence of arithmetic means of operators in Fréchet spaces, J. Math. Anal. Appl. 401 (2013), 160-173.
- [2] A.A. Albanese, J. Bonet, W.J. Ricker, The Cesàro operator in the Fréchet spaces ℓ^{p+} and *L ^p−*, Glasg. Math. J. 59 (2017), 273-287.
- [3] G. Bennett, Factorizing the classical inequalities, $Mem.$ Amer. Math. Soc. 120 (1996), no. 576, viii $+130$ pp.
- [4] P.S. Bourdon, N.S. Feldmann, J.H. Shapiro, Some properties of *N*-supercyclic operators, Studia Math. 165 (2004), 135-157.
- [5] G.P. Curbera, W.J. Ricker, A feature of averaging, Integral Equations Operator Theory, 76 (2013) , 447-449.
- [6] G.P. Curbera, W.J. Ricker, Solid extensions of the Cesàro operator on ℓ^p and c_0 , Integral Equations Operator Theory, 80 (2014), 61-77.
- [7] G.P. Curbera, W.J. Ricker, The Cesàro operator and unconditional Taylor series in Hardy spaces, Integral Equations Operator Theory, 83 (2015), 179-195.
- [8] O. Delgado, L^1 -spaces of vector measures defined on δ -rings, Arch. Math. 84 (2005), 432-443.
- [9] O. Delgado, Optimal domains for kernel operators on $[0, \infty) \times [0, \infty)$, Studia Math. 174 (2006), 131-145.
- [10] N. Dunford, J.T. Schwartz, Linear Operators I: General Theory, 2nd Printing, Wiley Interscience Publ., New York, 1964.
- [11] K.-G. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality, Lecture Notes in Mathematics, 1679, Springer Verlag, Berlin Heidelberg, 1998.
- [12] G.H. Hardy, Note on a theorem of Hilbert, *Math. Z.* **6** (1920), 314-317.
- [13] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934.
- [14] K. Knopp, *Infinite Sequences and Series*, Translated Ed., Dover Publ., New York, 1956.
- [15] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
- [16] G. Leibowitz, Spectra of discrete Cesàro operators, Tamkang J. Math. 3 (1972), 123-132.
- [17] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
- [18] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer Verlag, Berlin Heidelberg, 1996.
- [19] E.R. Lorch, Means of iterated transformations in reflexive vector spaces, Bull. Amer. Math. Soc. 45 (1939), 945-947.
- [20] J.B. Reade, On the spectrum of the Cesàro operator, Bull. London Math. Soc. 17 (1985), 263-267.
- [21] Satit Saejung, Another look at Cesàro sequence spaces, J. Math. Anal. Appl. 366 (2010), 530-537.

ANGELA A. ALBANESE, DIPARTIMENTO DI MATEMATICA E FISICA "E. DE GIORGI", UNIversità del Salento- C.P.193, I-73100 Lecce, Italy $E-mail$ $address:$ angela.albanese@unisalento.it

José Bonet, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, E-46071 Valencia, Spain $E-mail$ $address:$ j bonet Cmat.upv.es

WERNER J. RICKER, MATH.-GEOGR. FAKULTÄT, KATHOLISCHE UNIVERSITÄT EICHSTÄTT-Ingolstadt, D-85072 Eichstätt, Germany

E-mail address: werner.ricker@ku.de