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MULTIPLIER AND AVERAGING OPERATORS IN THE
BANACH SPACES ces(p), 1 <p <

ANGELA A. ALBANESE, JOSE BONET, WERNER J. RICKER

AssTrACT. The Banach sequence spaces ces(p) are generated in a specified
way via the classical spaces ¢,,1 < p < co. For each pair 1 < p,q < oo the
(p, ¢)-multiplier operators from ces(p) into ces(q) are known. We determine
precisely which of these multipliers is a compact operator. Moreover, for
the case of p = ¢ a complete description is presented of those (p, p)-multiplier
operators which are mean (resp. uniform mean) ergodic. A study is also made
of the linear operator C' which maps a numerical sequence to the sequence of
its averages. All pairs 1 < p,q < oo are identified for which C' maps ces(p)
into ces(q) and, amongst this collection, those which are compact. For p = ¢,
the mean ergodic properties of C' are also treated.

1. INTRODUCTION.

For each element z = (), = (z1,2,...) of CN let |x| := (|z,]), and write
x > 0if z = |z|. Of course, z < y means that (y — x) > 0. The Cesaro operator
C : CN — CV, defined by
T+ T2 X1+ X2+ T3
C(z) = (z1, , ,

2 3

satisfies |C(x)| < C(|z|) for z € CN and is a vector space isomorphism of CN onto
itself. It is also a topological isomorphism when CN is considered as a (locally
convex) Fréchet space with respect to the coordinatewise convergence. For each
1 < p < oo define

L), xeCh,

n

1
ces(p) i= {z € €t [alleestry 1= 15D aullally = 1CUallp < oo}, (11)
k=1
where || - ||, denotes the standard norm in ¢,. An intensive study of the Banach

spaces ces(p),1 < p < oo, was undertaken in [3]; see also the references therein.
In particular, they are reflexive, p-concave Banach lattices (for the order induced
by CN) and the canonical vectors ey := (3, )n, for & € N, form an unconditional
basis, [3], [6]. For any pair 1 < p,q < oo the space ces(p) is known not to be
isomorphic to 4,4, |3, Proposition 15.13|. It is shown in Proposition 3.3 (for all
p # q) that ces(p) is also not isomorphic to ces(q). It is important to note that

the inequality
Ap B,
L1/ < HekHces(p) < Wv k€N, (12)

Key words and phrases. Banach sequence spaces ces(p), multiplier, compact operator, Cesaro
operator, mean ergodic operator.
Mathematics Subject Classification 2010: Primary 46B45, 47B37; Secondary 46B42, 46G10,
47A16, 47B10.
1



2 ANGELA A. ALBANESE, JOSE BONET, WERNER J. RICKER

is valid for strictly positive constants A,, B, and with %+ ﬁ =1, [3, Lemma 4.7].
It is known, [3, p.26], that ces(p) = cop(p) with equivalent norms, where

0o Th
cop(p) = { € € el 2= 1 2Dyl <0}, 1<p< oo

k=n

The dual Banach spaces (ces(p))’,1 < p < oo, are described in Section 12 of
[3]. Yet another equivalent norm in ces(p), via the dyadic decomposition of N, is
available, [11, Theorem 4.1]. Namely, z € CY belongs to ces(p) if and only if

00 27+l 1
lellg = (3207 ( 3 \xk\)p)l/p < 0. (1.3)
J=0 k=27

The spaces ces(p), 1 < p < 00, also arise in a very different way. Fix 1 < p < co.
Since the Cesaro operator Cp ) : £, — £, i.e., C restricted to £p, is a positive
operator between Banach lattices, it is natural to look for continuous ¢,-valued
extensions of €}, to Banach lattices X C CN which are larger than ¢, and solid
(ie., y € CN and |y| < |z| with 2 € X implies that y € X). The largest of all
those solid Banach lattices in CN for which such a continuous, ¢p-valued extension
of Cpp : £, — £, is possible is precisely ces(p), [6, p.62]. Of course, this "largest
extension" Cy,), @ ces(p) — £, is the restriction of C from CN to ces(p).
Somewhat surprisingly, C(,), also possesses an integral representation. That is,
ces(p) coincides with the L!-space of an {p-valued vector measure m, and C,
is given by

(»),p

Cupo@) = [ a(m)dmy(n), 2 & L' my) = ces(r).

Here my, : R — ¢, is the o-additive vector measure defined on the d-ring R of
all finite subsets of N by

mp(A) == Cpp(xa), A€ER, (1.4)

where x4 : N — C is the element of cN given by x4 = ZkeA e for each A C N.
This claim certainly requires a proof. First, the space L'(my) of all m,-integrable
functions on N, as defined in [8], [9], is the optimal domain for the operator
Cpp (in the sense of |9, Corollaries 2.4 and 2.6]) within the class of all Banach
function spaces (briefly, B.f.s) over (N,R,u) which have absolutely continuous
norm (briefly, a.c.); here u denotes counting measure. More precisely, L!(m,) C
CN contains the domain space £, of Cy,, the integration map I, : L!(m;,) — £,
(given by © — [yxdm,, for © € L'(my)) satisfies I, (z) = Cpp(z) for each
z € £, C LY(m;), and L'(m,) is the largest of all B.fs.” over (N, R, u) having
a.c.-norm to which (), can be extended while still maintaining its values in £p,.
To verify this, we observe that an equivalent norm in L!(m,,) is given by

o1,y = s { | [ oam,

see (3) on p.434 of [8]. But, for x € L'(m,) and each A € R, the function x4
is an R-simple function and so it follows from (1.4) that [, zdm, = Cpp(zx4).

tAe R}, z € L'(my);
p
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Now, for x € ces(p) fixed, note that

| [ adms] = 1C0u@xalls = 1Cumptaxalll < ICupppliaDlls = s < o

for every A € R. If we define fodmp = Cyp)p(rxa) € £, for an arbitrary
subset A C N, then z is m,-integrable in the sense of [8, p.434|, [9, p.133],
with [zl 21 (m,) < ||Z]lces(p)- Since ces(p) itself is a B.f.s. over (N, R, u) having
an a.c.-norm and contamlng ¢,, we can conclude from the optimality of L'(m,)
that ces(p) C L'(m,) with a continuous inclusion. On the other hand, recall that
ces(p) is the largest solid Banach lattice in CY which contains £, and C maps into
¢,. But, the B.f.s. L'(m,) is such a solid Banach lattice which C' maps into £,,.
Indeed, since L!(m,) C CY with £, dense in L*(m,) (as £, contains the R-simple
functions which are known to be dense in L!(m,), [8, p.434]) and C acts in all of
CN, it follows from the fact that norm convergence of a sequence in L' (m,,) implies
the pointwise convergence p-a.e. of a subsequence, |9, p.134] (in this case meaning
coordinatewise convergence in CN ), that the extended operator I, is necessarily
given by I, (z) = C(z) for all z € L'(my). Accordingly L'(m,) C ces(p) and
hence, L'(m,) = ces(p) with equivalence of the norms |- |11,y and || - [lces(p)-
It is an important feature that m, cannot be extended to a more traditional
o-additive, £,-valued vector measure defined on the o-algebra 2N generated by
R. This is because its range my(R) is an unbounded subset of ¢,. Indeed, for
A, ={1,2,..,N} € R we have m,(An) = Zjvzl ej + NN %ej and hence,
my(AN)|l, > NYP for all N € N.

Having presented several equivalent and varied descriptions of the spaces ces(p),
1 < p < o0, we now formulate the aim of this note, namely to make a detailed
analysis of certain linear operators defined on these spaces. Let us be more pre-
cise.

Given a pair 1 < p,q < 00, an element a € CY is called a (p, q)-multiplier if it
multiplies ces(p) into ces(q), that is, if ax € ces(q) for every = € ces(p), where
the product ax := (anzy)y is defined coordinatewise. The closed graph theorem
ensures that the corresponding linear (p, ¢)-multiplier operator My, : x — ax
is then necessarily continuous from ces(p) into ces(q). If p = ¢, then we denote
Mg, simply by M7 and note that My is the diagonal operator acting in ces(p)
via the matrix having the scalars {a, : n € N} in its diagonal. The vector space
of all (p, ¢)-multipliers, denoted by M, 4, (or M,, if p = ¢), has been completely
determined by G. Bennett; see [3, pp.69-70], after recalling that cop(p) = ces(p)
for all 1 < p < o0.

In Section 2 we investigate various properties of the multiplier operators My,
for all pairs 1 < p,q < oo and a € M, 4. For instance, those multipliers a € M, 4
for which M“q is a compact operator are characterlzed see Propositions 2.2 and
2.5. Also, given a € M), = l it is shown that the spectrum of My is the set

o(My) =a(N), 1<p<oo,

where a(N) := {a, : n € N} C C, and that [|M}|lop = [|allcc with || - [[op denoting
the operator norm of My : ces(p) — ces(p); see Lemma 2.6 and Proposition
2.7. Furthermore, those a € M,, are identified for which the operator My is mean
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ergodic (cf. Proposition 2.8) as well as those for which M} is uniformly mean
ergodic (cf. Proposition 2.10).

It is clear from (1.1) and the discussions above that the Cesaro operator C' is
intimately connected to the Banach spaces ces(p),1 < p < co. Indeed, Hardy’s
classical inequality states, for 1 < p < oo, that

Sy <k 30
n=1 k=1 n=1

for all choices of non-negative numbers {b,}°2; and some constant K, > 0, [12].
Setting by, := |z,|, for n € N and each x € £, it is immediate that ||Cp,(|z])||, <

K;/pHpr, that is, £, C ces(p) with a continuous inclusion; Remark 2.2 of [6]
shows that this containment is strict. Moreover, the Cesaro operator C.g), :
ces(p) — ¢, is continuous; this was already implicitly used above. To see this
fix z € ces(p). Using the fact that || - ||, is a Banach lattice norm yields

1Ce)p(@)llp = C@) lp < ICU2Dp = 12 lces(p)-

The connection between C' and ces(p) is further exemplified by the following
remarkable result of Bennett, [3, Theorem 20.31].

Proposition 1.1. Let 1 < p < oo and x € CN. Then
x € ces(p) if and only if C(|z|) € ces(p). (1.5)

Further examples of Banach spaces X C CN such that C'(X) C X and for which
Proposition 1.1 is valid (with X in place of ces(p)) are identified in [5], [6], [7].

In Section 3 it is shown that C' maps ces(p) into ces(q), necessarily continuously,
if and only if 1 < p < ¢ < o0; see Proposition 3.5. Furthermore, all pairs
1 < p,q < oo are identified for which C' maps ¢, into ces(q) and for which C
maps ces(p) into £, as well as the subclass of these continuous operators which
are actually compact. Two important facts in this regard are that the Cesaro
operator Ceep) c(p) : ces(p) — ces(p) has spectrum

0(Copretr) =AEC A=< B} 1<p<oo, (1.6)

[6, Theorem 5.1], and that the natural inclusion map ces(p) < ces(q) is compact
whenever 1 < p < ¢; see Proposition 3.4. A consequence of (1.6) is that Cy,) «(p)
and C),,, are never mean ergodic.

2. MULTIPLIER OPERATORS FROM ces(p) INTO ces(q).

According to table 16 on p.69 of [3], given 1 < p < g < oo an element a =
1 1
(an)n € CN belongs to M, , if and only if the element (a,ne »), € £. Observe
that (% — %) < 0. In particular, /oo € M, , and, if p = ¢, then M,, = . For
fixed a € fw, it follows via the inequality C(Jau|) < ||a|lC(|ul), for u € CN,
that [ M2(@)lestr) = 10zl < Jalloc|Caly = el sy for all @ €
ces(p). Hence, My : ces(p) — ces(p) satisfies

IM2lp < lallooy @€ b, 1<p<os. (2.1)

Here ||.||op denotes the operator norm. We begin with a result which is prob-
ably known; due to the lack of a reference we include a proof. Let ¢ be the
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vector subspace of CN consisting of all elements with only finitely many non-zero
coordinates.

Lemma 2.1. Let T : CY — CN be a continuous linear operator and X,Y be a
Banach sequence spaces satisfying ¢ C X C CN and ¢ CY C CN with continuous
inclusions such that T(X) C Y. Then the restriction T : X — Y is a compact
operator if and only if it satisfies the following property (K), namely:
(K) If a norm bounded sequence {x,,}5°_; C X satisfies limpy, o0 T, = 0 in
the Fréchet space CN, then limy, oo T'(x) = 0 in the Banach space Y.

Proof. By the closed graph theorem 7' : X — Y is continuous.

Suppose first that 7' : X — Y is compact. Let {z,,}5°_; C X be any sequence
in X satisfying limy, oo 2, = 0 in CN. Assume that the sequence {T'(x,,)}%_;
does not converge to 0 in Y. Select a subsequence {xp,, }72, of {m}ov_; and
r > 0 such that

1T (zm )y >, k€N (2.2)
By compactness of T' there exists y € Y and a subsequence {zm, ,, }12; of {xm, }32,
such that limy_,eo [|T'(2m, ;) — ylly = 0. Continuity of the inclusion ¥ C CN im-
plies that also lim;_, T(mmk(l)) = y in CN. But, lim;_,oo Ty, = 0 in CN and
T : CN — C" is continuous. Accordingly, lim;_,« T (zmy)) = 0 in CN and so
y = 0; contradiction to (2.2). Hence, necessarily T'(z,,) — 0 in Y for m — oc.
This establishes that 7" has property (K).

Conversely, suppose that 7" has property (K). Let {z;}2; be any bounded
sequence in X. To show that T is compact we need to argue that {T(z;)}%,
has a convergent subsequence in Y. Since the inclusion X C CN is continuous,
the sequence {z;}3°, is also bounded in the Fréchet-Montel space CN. Hence,
there is a subsequence u; := x;;, for j € N, of {x;}{°, and z € CN such that
limj oo u; = @ in CN. Suppose that {T'(uj)}32, is not convergent in Y. Then
{T'(u;)}72, cannot be a Cauchy sequence in Y and hence, there exists a > 0
such that, for every j € N, there exist kj,l; € N with j < k; < [; such that
|T(ug,) — T(w,)lly = a. Via this inequality we can choose for j = 1 natural
numbers 1 < k; < Iy, then for j := 1+1[; natural numbers 1+1; < ko < l2 and so
on, such that 1 < k1 <1 < ke <ly < k3 <l3... and, for these natural numbers
{kn, 1} 1, we have

T (ug,) — T(u,)|ly >a, neN. (2.3)
Then z, := uy, —u,, for n € N, is a bounded sequence in X. Since lim;_,oc u; = x
in CN, it follows that lim,, ;o 2, = 0 in CN. By property (K), lim, oo T(2,) =
0 in Y, that is, limy—oo(7T(uk,) — T(w,,)) = 0 in Y which contradicts (2.3).
Hence, {T'(u;)}32, does converge in Y and is a subsequence of {T'(z;)}72;. The
compactness of T is thereby verified. U
Proposition 2.2. Let 1 < p < ¢ < o0 and a € Mp,. Then the continuous
multiplier operator My, : ces(p) — ces(q) is compact if and only if (ann%_%)n €
Co-

1 1
Proof. Suppose first that w = (wy)n = (apyne ?), € co. Define the element
wy = (wq,...,wn,0,0,...) for each N € N in which case (w — wy) € . So,
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by (2.1), [[My — MPN||op = | My~ N [|op < [[w — wi |- Since w € co, it follows

that limy 0 [[w — wN|[lec = 0 and hence, M}’ : ces(p) — ces(p) is compact as
11
each MV, for N € N, is a finite rank operator. Define v, :=n? <, forn € N, in

which case v := (vy)n € Mp4 by Bennett’s multiplier criterion mentioned above,
that is, M, , : ces(p) — ces(q) is continuous. Since My, = My MY, it follows
that M, is compact.

Conversely, suppose that M, is a compact operator. According to (1.2), the
sequence f; 1= jl/p,ej, for j € N, is bounded in ces(p). Clearly {f;}72, converges
to 0 in the Fréchet space CN. Moreover, My (fj) = jl/p/ajej, for j € N, and
Mg (fj) — 0in CN for j — oo (as the multiplier operator M® : CN — CN
given by x +—— ax is continuous). Applying Lemma 2.1 to the setting X :=
ces(p), Y := ces(q) and the continuous multiplier operator 7= M® : CN — CN
(whose restriction to X is My ), it follows that {Mp ,(f;)}72, actually converges
to 0 in ces(q), that is, limjﬁoojl/p,]aj] . ||€j||ces(q) = lim; oo Hjl/p/ajejﬂces(q) =0.
On the other hand, (1.2) implies that A, < j/7'|l€;llces(q) < Bg for j € N. It
follows th;lit 1limj_>ooj1/p/|aj]/j1/q/ = 0. Since I% - % = % — % we can conclude
that (apna »), € co. O

q)

For the case when p = ¢ and a € M,, = {, Proposition 2.2 implies that the
multiplier operator MY : ces(p) —> ces(p) is compact if and only if a € cp.
To treat the cases when p > g we recall, for each r > 1, the Banach space

d(r) == {z € C": |lzllae) := |1Zlr < 00},
where T = (Zn)n = (SUPg>y, [T&])n and ||Z]]; is its norm in £, [3, pp.3-4].

Lemma 2.3. Let 1 <1 < 00 and x € d(r). Then imy_, ||z — as(N)Hd(T,) =0,
where ) .= (z1,...,2x,0,0,...) for each N € N.

Proof. Given N € N observe that z—z(V) = (0,...,0,ZN4+1,ZN+2,...) and hence,
(x —x(N))A = (ZN41y-+ -y TN+1,TN+2, - ..) Where the first (N + 1)-coordinates are
constantly Ty 1. It follows that
oo
o= 2™y = (N + DEva) + Y G NeN (24
n=N+2

Since ((Z)")n is a decreasing sequence of non-negative terms which belongs to ¢y,
it is classical that lim,_ . n(Zy)" = 0, [14, § 3.3 Theorem 1]. Let € > 0. Choose
K € N such that n(Z,)" < & and Y02 ;(Z,)" < & for all n > K. It follows from
(2.4) that ||z — CC(N)HZ(T) < € for all N > K. The proof is thereby complete. [

Let 1 < ¢ < p < o0 and choose r according to % = % — %. Then it follows from
table 32 on p.70 of 3] that

M, g = d(r). (2.5)

Lemma 2.4. Let 1 < g < p < 0o and r satisfy % = % - 171). Then there exists a

constant Dy 4 > 0 such that
[1Mpgllop < Dpg

allagry, @€ Mypgq=d(r).
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Proof. For Banach spaces X,Y let £(X,Y) denote the Banach space of all con-
tinuous linear operators from X into Y, equipped with the operator norm || - ||op.
According to (2.5) the linear map ® : d(r) — L(ces(p),ces(q)) specified by
®(a) := My, is well defined. To establish the existence of D4 it suffices to
show that ® has closed graph. This is a standard argument after noting that
convergence of a sequence in d(r) implies its coordinatewise convergence. U

The following result shows, for p > ¢ > 1, that every multiplier operator My,
for a € M, 4 is compact.

Proposition 2.5. Let p > ¢ > 1. For a € CN the following assertions are
equivalent.

(i) a € My, that is, My, : ces(p) — ces(q) is continuous.
(ii) My, : ces(p) — ces(q) is compact.
11 1

(i) @ € d(r) where ; = ¢ — .

Proof. (i) <= (iii) is precisely the characterization (2.5) of Bennett.

(ii) = (i) is clear as every compact linear operator is continuous.

(iii) = (ii). Let /™ := (a1,...,an,0,0,...) for N € N. Then a—a™ € d(r)
for N € Nand limy_,0 Ha—a(N)Hd(r) = 0; see Lemma 2.3. By (2.5) the operators
My, Mg’(qN) and Mﬁ;“(m :(N]>\4;‘,q - Mﬁ(qN) all belong to L(ces(p), ces(q)). Lemma
2.4 yields that | Mg, — M2, ngNg Dy glla —a™ |40y, for N € N. Hence, M2,
is compact as each operator Mgfq " has finite rank. O

We now consider further properties of multiplier operators for the case when
p = q. The space L(ces(p), ces(p)) is simply denoted by L(ces(p)).

Lemma 2.6. Let 1 < p < oco. Then
||M;(71H0p = |lallco, a € loo = M,. (2.6)
Proof. Just prior to Proposition 2.2 it was noted that ||[Mg]|op < [lalloc. On the

other hand, since Mj(e;) = aje; for j € N, it is clear that the point spectrum
opt(M), consisting of all the eigenvalues of M/, satisfies

a(N):={a; : j e N} C opt(My) C o(My).
Then the spectral radius inequality for operators, [10, Ch. VII, Lemma 3.4|, yields
1M llop = 7(My) :=sup{|A| : A € o(Mp)} > Sgg\aj\ = llalloo-
j

]
The spectrum of multiplier operators in £(ces(p)) can now be determined.
Proposition 2.7. Let 1 < p < co. Then
o(My) =a(N)={a;: j €N}, a€M,. (2.7)
Proof. From the proof of Lemma 2.6 we have a(N) C op(My) C o(M,). Since
o (M) is a closed set in C, it follows that a(N) C o(Mp).
Suppose that A € a(N). Then b = (by,), with b, := +~— for n € N belongs to

A—an

loo = M,,. Using the formula A — M) = Mg‘k“ (with I the identity operator
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on ces(p) and 1 := (1,1,1,...)) it is routine to check that (Al — MS)M;,’ =1=
MJ(A — Mg). Hence, AI — M} is invertible in L(ces(p)) and so A lies in the
resolvent set of M. This establishes the inclusion o(My) C a(N). O

For a Banach space X, an operator T € L£(X) := L(X,X) is mean ergodic
(resp. uniformly mean ergodic) if its sequence of Cesaro averages

1 <= ,om
T[n] = E Z " néeN, (28)
m=1

converges to some operator P € £(X) in the strong operator topology Ts, i.e.,
limy, o0 Tjy)(x) = P(x) for each z € X, [10, Ch. VIII] (resp. in the operator
norm topology 7). According to [10, Ch. VIII, Corollary 5.2| there then exists
the direct sum decomposition

X=KerI-T)®e (I-T)(X). (2.9)
Moreover, we have the identities (I =77, = T} (I=T) = L(r—1ntY), for n €
N, and, setting Tjg) := I, that
(n—1)

n

1
T =Ty~ Ty, neN. (2.10)

An operator T' € L£(X) is called power bounded if sup,cy [|[T"]|op < 00. In this

L a1 ™
case it is clear that necessarily lim, oo I lop 0. A standard reference for mean

ergodic operators is [15|. Finally, define D:= {z€eC:|z| < 1}.

Proposition 2.8. Let 1 < p < oo and a € My, = . The following statements
are equivalent.
(i) flallo < 1.
(ii) The multiplier operator My € L(ces(p)) is power bounded.
(iii) The multiplier operator My e L(ces(p)) is mean ergodic.
(iv) The spectrum o(My) C D.
(v) limy_yoo 22

= 0 relative to 75 in L(ces(p)).

Proof. (i) = (ii). Since M, is an algebra under coordinatewise multiplication in
CN we have (My)" = M;}n (where a™ := (a}); for a = (a;);) and so, via Lemma
26, 1) lop = |48 [op = "l < 1. mEN.

(ii) == (iii). Power bounded operators in reflexive Banach spaces are always
mean ergodic, [19].
(i) = (iv). Since [|aloo = sup{|A| : A € a(N)} <1, (2.7) implies o(MY) C D.
(iv) (i). Clear from (2.7).
(iii) (1). Suppose that ||a||oc > 1. Then there exists k € N such that |ag | > 1.
Since (My)"(ex) = ajex, for n € N, it follows that

I(ME)" (er)llcestp) _ laxl”
n n

—
=

||€kHces(p)7 n €N,

with |ag| > 1. Hence, the sequence {(Mg)n o0 1 cannot converge to 0 € L(ces(p))
in the topology s, thereby violating a necessary condition for M, to be mean
ergodic (see (2.10)); contradiction! So, ||a|leo < 1.
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(iii) = (v). This follows from (2.10).
(v) = (i). See the proof of (iii) = (i). O

In view of Proposition 2.8 we may assume that [|a[cc < 1 and My is power

. . . M ||o
bounded whenever it is mean ergodic. Then lim,_, w = 0 and so, by a

well known result of Lin, [17], the uniform mean ergodicity of M, is equivalent to
the range (I — M2)(ces(p)) = (My~*)(ces(p)) of I — M being a closed subspace
of ces(p).

Given w € CN define its support by S(w) := {n € N : w, # 0} in which case
WX5(w) = W as elements of CN. If w € £, then for each 1 < p < oo we have

My (ces(p)) :={wz : x € ces(p)} = {wxs@w)T : T € ces(p)}- (2.11)

We will also require the closed subspace of ces(p) which is the range of the
continuous projection operator M;(S(m, ie.,

Xup = {Xs@® : x € ces(p)} = My ™™ (ces(p)). (2.12)

It is routine to check that Xy, is My’ -invariant. Let M;” : Xwyp — Xyp be
the restriction of M}’ so that M;,” € L(Xy,p). Since wy, # 0 for each n € S(w),
it follows that ]\;[;” is injective. Hence, M;j’ is a vector space isomorphism of
Xy p onto its range M;”(Xw,p) in Xy, By (2.11) and (2.12) it is clear that
M;“(Xw,p) = M,"(ces(p)) whenever M;’(ces(p)) is closed in ces(p).

Lemma 2.9. Let w € lo and 1 < p < oco. If the range M, (ces(p)) is closed in
ces(p), then 0 & (Wxsw))(N).

Proof. By the discussion prior to Lemma 2.9, M;”(pr) is a Banach space for

[|ces(p) Testricted to the closed subspace My’ (ces(p)) = M;,”(Xw,p) of

ces(p). Via the open mapping theorem M;)“ : Xuwp — Xup is then a Banach
space isomorphism. So, there exists T € £(X,, ) satisfying

MPT =1=TM". (2.13)

the norm || -

For each n € S(w) the basis vector e, € Xy, . Define y™ := T(e,) for n € S(w).
It follows from (2.13) that e, = wy™. Since the k-th coordinate of e, is 0
for k € N\{n}, the same is true of wy™. Accordingly, e, = w,y™ and so
T(e,) =y = winen for each n € S(w). But, {e, : n € S(w)} is a basis for Xy,
and T' € L£(Xy,) from which we can deduce that T'(x) = w™tz for all x € X,
(with w™! = (w%b)nes(w))' Setting v := w ™ x g € CN, it follows that

0z = T(xs(yr) = TMY™ (2) = GTMY ™) (@), (2.14)
for each x € ces(p), with j : X, — ces(p) being the natural inclusion map
and (2.14) holding as equalities in CN. But, jTM;CS(“’) € L(ces(p)) if we interpret

M5 ces(p) — Xup and hence, (2.14) actually holds in ces(p). That is,

M, = jTM;CS(w) belongs to L(ces(p)) which means that v € M), or, equivalently,
that v € £. This implies the desired conclusion. O

Proposition 2.10. Let 1 < p < oo and a € M), = l. The following assertions
are equivalent.
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(i) My is uniformly mean ergodic.

(i) llallsc <1 and 1 & a(N)\{1}.
Proof. (i) = (ii). By the discussion immediately after Proposition 2.8 we know
that (i) implies |jallcc < 1 and the range of I — Mg = M} is closed in
ces(p). Then w := 1 — a satisfies the hypothesis of Lemma 2.9. Accordingly,

0 ¢ ((1—a)xsa—q)(N) which is equivalent to 1 € a(N)\{1}.

(ii) = (i). The condition 1 ¢ a(N)\{1} implies that u := (1 — a) " xg(1—q)
belongs to loo. In particular, M € L(ces(p)). Moreover, w := (1 — a) € lu
satisfies (in L(ces(p))) the identity My’ M} = My*™ Tt follows from (2.11) that

M (ces(p)) < M5 (ces(p)) = Xup (see (2.12)). It is routine to verify the
reverse inclusion and so actually M;"(ces(p)) = Xuwp. In particular, the range of

M}~ = I — M is closed in ces(p). Since [lalloc < 1 implies that Mg is power

bounded (cf. Proposition 2.8), it follows that lim, % = 0. Hence, the

criterion of Lin can be applied to conclude that M is uniformly mean ergodic. [

An example of a multiplier operator which is mean ergodic but not uniformly
ergodic is M, with a := (1 — L),
In (2.9), with X := ces(p) and T := M (for ||all < 1), note that

Ker(I — My) = {x € ces(p) : ¥, = 0 for all n € N with a, # 1}.

Concerning the linear dynamics of a continuous linear operator 7' : X —
X defined on a separable, locally convex Hausdorff space X, recall that T is
hypercyclic if there exists x € X whose orbit {T"z : n € Ny := {0} UN} is
dense in X. If, for some = € X, the projective orbit {\T"z : A € C,n € Ny} is
dense in X, then T is called supercyclic. Since this projective orbit coincides with
UX T (span{x}) we see that supercyclic is the same as 1-supercyclic as defined
in [4]. Hypercyclicity always implies supercyclicity but not conversely.

Lemma 2.11. Let a = (an)n € CN and define the multiplier operator M® :
CN — CN by M%x) := ax for x € CN. Then M® is not supercyclic in the
Fréchet space CN.

Proof. The continuous dual space (CN)' of CN is the space ¢. Clearly M is
continuous on CN and its dual operator (M%) : ¢ — ¢ is given by (M?)'(y) = ay
for y € . Moreover, it follows from (M®)'(e;) = aje; for j € N that each canonical
basis vector e; € ¢ is an eigenvector of (M*)". According to Theorem 2.1 of [4]
the operator M® € L(CY) cannot be supercyclic. O

Given 1 < p < oo and a € CN the multiplier operator M¢ : CN — CN maps
¢y into £, if and only if a € ¢, [3, table 1, p.69]. Denote this restricted operator
by M, < £, — £y,

Proposition 2.12. Let 1 < p < 0o and a € .
(i) The multiplier operator M, € L(ly,) is not supercyclic.
(ii) The multiplier operator My € L(ces(p)) is not supercyclic.

Proof. (i) Since £, is dense in CN (as it contains ¢) and the natural inclusion
¢, — CN is continuous, the supercyclicity of M{, € L(¢,) would imply the
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supercyclicity of M® € £(CY), which is not the case (cf. Lemma 2.11). Hence,
pr} is not supercyclic.

(ii) Since ces(p) is dense in CN and the inclusion ces(p) < CN is continuous,
the analogous argument to that of part (i) applies. O

3. THE CESARO OPERATORS

Consider a pair 1 < p,q < oo. Denote by C) c(q) (tesp. Ceip).gi Cp.e(q)i Cp.a)
the Cesaro operator C' when it acts from ces(p) into ces(q) (resp. ces(p) into £y; £
into ces(q); ¢p into £4), whenever this operator exists. The closed graph theorem
then ensures that this operator is continuous. We use the analogous notation
for the natural inclusion maps i) c(q); le(p),qs p.c(q); ip,g Whenever they exist.
The main aim of this section is to identify all pairs p, ¢ for which these inclusion
operators and Cesaro operators do exist and, for such pairs, to determine whether
or not the operator is compact. For each 1 < p < oo, the spectrum of C,,, € L(¥p)
is well known, |16, Theorem 2|, [20, Theorem 4|, and coincides with the spectrum
of Cep),e(p) € L(ces(p)); see (1.6).

We begin with a preliminary result.

Lemma 3.1. Let 1 < p < 0.
(i) The operator C ), : ces(p) — £y exists and satisfies || Cegpy pllop < 1.
(i1) The largest amongst the class of spaces £y, for 1 < r < oo, which satisfy
£, C ces(p) is the space €p.

Proof. (i) Follows from the discussion immediately prior to Proposition 1.1.
(ii) See Remark 2.2(iii) of [6]. O

Proposition 3.2. Let 1 < p,q < oo be an arbitrary pair.

(i) The inclusion map ipq : £, — Ly exists if and only if p < q, in which
case ||ip,qllop = 1.

(ii) The inclusion map i,cq) : €p — ces(q) ewists if and only if p < g, in
which case /iy o(q)llop < ¢'.

(iii) The inclusion map i) c(q) : ces(p) — ces(q) eists if and only if p < g,
in which case ||ic(p) c(q)llop < 1-

(iv) ces(p) € £y for all choices of 1 < p,q < oc.

Proof. (i) This is well known.
(ii) Lemma 3.1(ii) shows that £, Z ces(q) if p > q.
Let p < q. For = € £;, we have ||i,, o(q) (%)l ces(q) = |2l ces(q) With

[€]lcesq) = 1€z Dllg < 1Cqqllopllzllg < [1Cqqllopllllp,

where the last inequality follows via part (i). Since ||Cqqllop = P, [13, Theorem
326], the desired conclusion is clear.

(iii) If p > g, then ces(p) Z ces(q). Indeed, by Lemma 3.1(ii) there exists y € £,
with y & ces(q). By part (ii), y € ces(p).

Let p < ¢. Fix z € ces(p). By Lemma 3.1(i) we have C(|z|) € ¢, and hence, by
part (i), C(|z|) € £4. Accordingly,

12llces(qy == ICzDllg < ICUzDlp = 12 ]lces(p)-
This shows that ic(p) c(q) exists and [|ic(p) c(q)llop < 1.
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(iv) For arbitrary 1 < p < oo there exists € ces(p) with x ¢ ls, [6, Remark
2.2(ii)]. Then also = & /¢, for every 1 < ¢ < 0. O

If 1 < p < q < oo, then the inclusion ces(p) C ces(q) as guaranteed by
Proposition 3.2(iii) is actually proper. Indeed, by Lemma 3.1(ii) there exists
x € Ly with « & ces(p). Then y := C(|z|) € ces(q); see Proposition 3.2(ii). But,
x & ces(p) implies |z| & ces(p) and so y & ces(p); see Proposition 1.1. That
ces(p) G ces(q) also follows from the next result.

Proposition 3.3. Let 1 < p,q < oo with p # q. Then ces(p) is not Banach space
isomorphic to ces(q).

Proof. According to (1.3) the closed (sectional) subspace
Y :={z € ces(p) : 1, =0 unless k=27 for some j=0,1,2,...}

is isomorphic to a weighted £,-space (as [|z([,) = (3272, 21(1=P) | 10, |P)V/P for o €
Y') and hence, also isomorphic to £,. Suppose that ces(p) is isomorphic to ces(q).
Then ¢, is isomorphic to a closed subspace of ces(q). Since ces(q) is isomorphic
to a closed subspace of the infinite {;,-sum ¢4(E;) with each E,,n € N, a finite
dimensional space, [21, Theorem 1], it follows that ¢, is isomorphic to a closed
subspace of ¢4(Ey). But, X := {, has a shrinking basis (it is reflexive) and so
is isomorphic to £4(Dy) with each Dy, k € N, a finite dimensional space, [18,
Theorem 2.d.1]. Since ¢, is clearly isomorphic to a closed (sectional) subspace
of £y(Dy), it follows that ¢, is isomorphic to a closed subspace of ¢, with p # g,
which is not the case, [18, p.54]. So, ces(p) is not isomorphic to ces(q). O

Via Proposition 3.2 we now determine which inclusion maps are compact.

Proposition 3.4. Let 1 <p < g < oo be arbitrary.
(i) The inclusion iy q : £, — {4 is never compact.
(ii) The inclusion i) o(q) : ces(p) — ces(q) is compact if and only if p < q.

(iii) The inclusion iy, .(q) : £, — ces(q) is compact if and only if p < q.

Proof. (i) The image under i,, of the unit basis vectors {e, : n € N} C ¢,
has no Cauchy subsequence (hence, no convergent subsequence) in ¢, because
len — emllq = 219 for all n # m.

(ii) Since ic(p),c(p) is the identity operator on ces(p) it is surely not compact.
1

So, assume that p < ¢. Then the constant element a := 1 satisfies (a,ne »), =
1

(na_%)n € ¢ and hence, by Proposition 2.2 the multiplier operator M;q €
L(ces(p),ces(q)) is compact. But, M;q is precisely the inclusion operator ic(p) c(q)-

(iii) Since C), is not compact (by (1.6) its spectrum is an uncountable set)
and Cpp = Ce(p) p pe(p)s SO iy () fails to be compact. So, assume that p < gq.
Then the factorization i, .(q) = ic(p),c(q) Ip,c(p) tOgether with the compactness of
ie(p),c(q) (s€e part (ii)) shows that i, ., is compact. O

Now that the continuity and compactness of the various inclusion operators are
completely determined we can do the same for the Cesaro operators C': X — Y
where X, Y € {{,,ces(q) : p,q € (1,00)}. We begin with continuity.
Proposition 3.5. Let 1 < p,q < oo be an arbitrary pair.

(i) Cpgq: Ly — Ly exists if and only if p < q, in which case ||Cpqllop < D'
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(ii) Cpe(q) : tp — ces(q) ewists if and only if p < q, in which case ||Cp c(g)llop <

e
(iii) C’c(p),c(q) : ces(p) — ces(q) exists if and only if p < q, in which case
1Coe(w),ctallop < 4"

(iv) Cc(p),q Ces(p) — Ly exists if and only if p < q, in which case ||Cep) qllop <
1.

Proof. (ii) Let p > ¢. According to Lemma 3.1(ii) there exists z € £, \ ces(q),
in which case also || € £, \ ces(q). If C(|z|) € ces(q), then Proposition 1.1
implies that also |z| € ces(q); contradiction. So, |z| € ¢, but C(|z|) & ces(q), i.e.,
"Cp.c(q)" does not exist.

Suppose then that p < ¢. Then Cp, € L({,) exists with ||Cppllop = p’ and
pelq) - bp — ces(q) exists with ||ip o(q)llop < ¢ (cf. Proposition 3.2(ii)). Hence,
the composition Cp, o(q) = ip.c(q) Cpp ex1sts and ||Cp (q)llop < P'q'.

(i) Let p > q. If C D ex1sts then by Proposition 3.2(ii) Ch.e(q) = lg,e(q) Op,g also
exists. This contradicts part (ii) which was just proved.

So, assume that p < g. Then Cp,, € L({p) exists with ||Cppllop = P and ip 4
exists with || 4]|op = 1 (cf. Proposition 3.2(i)). Hence, Cp, 4 = i) 4 Cp,p exists and
1Cp.qllop < P'-

(iii) Let p > q. If Cy(p)c(q) exists, then by Proposition 3.2(i) also C ) =
Cep),c(q) tp,c(p) €xists. This contradicts part (ii) above.

So, assume that p < q. Fix « € ces(p). Then also |z| € ces(p) and so C(|z|) €
¢, C l4; see Lemma 3.1(i) and Proposition 3.2(i). Moreover, |C(z)| € ¢, as
|C(z)] < C(|z|). Hence,

1C(@)|ces(q) == ICUC@)DNlq < [CqaqlloplllC(@)Illq < ¢IC(I2)lq
< q’||C'(|x|)||p = q/Hches(p)'
This shows that Cyp) c(q) exists and [|Cegpy o(g)llop < ¢-

1

(iv) Let p > q. If Cyp) 4 exists, then also Cep () = lg,e(q) Celp),g €Xists (cf.
Proposition 3.2(ii)). This contradicts part (iii).
Assume now that p < q. Since C¢(p), exists with [[Cep) pllop < 1 (cf. Lemma

3.1(i)) and 4, 4 exists with ||ip ¢|lop = 1 (cf. Proposition 3. 2( ), it follows that the

composition Ce(p),q = ipg Ce(p)p exists and [|Cep) gllop < 1. 0

Concerning the proof of part (iii) of Proposition 3.5 when p < g, it is also
clear from Cip)c(q) = Te(p)ie(q) Celp).elp) that Cepeq) €xists. However, since
licp),e(q)llop < 1 (cf. Propos1t10n 3.2(iil)) and [|Cep)e(p)llop = P’ this approach
only yields ||Cep) o(q)llop < p’ whereas the given proof of (iii) yields [|Ceepy,c(g)llop <
¢’ which is a better estimate when p < q.

We now have all the facts needed to prove the main result of this section.

Proposition 3.6. Let 1 < p < g < oo be arbitrary.
(i) The Cesaro operator Cy, 4 : £, — £y is compact if and only if p < q.
(ii) The Cesaro operator Cy, c(q) = £y — ces(q) is compact if and only if p < q.
(iii) The Cesaro operator Cyp) o(q) : ces(p) — ces(q) is compact if and only
if p<aq.
(iv) The Cesaro operator Cyp) 4 = ces(p) — Ly is compact if and only if p < q.
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Proof. (i) Since o(Cp,p) is an uncountable set (see the comments prior to Lemma
3.1), it is clear that Cp ) is not compact. So, assume that p < g. Since C,, =
Ce(q).q tp.e(q) With Ce(g) 4 = ces(q) — £y continuous (cf. Lemma 3.1(i)) and 4y, () :
£, — ces(q) compact (by Proposition 3.4(iii)), it follows that C) 4 is compact.

(ii) For p = ¢ observe that (C’C(p)#(p))z = Cpe(p) Cep)p- By (1.6) and the
spectral mapping theorem, [10, Ch. VII, Theorem 3.11], we see that

T ((Cofp)e()?) = {A* [A = %I| < %/}

is an uncountable set and so (6’0(10)70(1,))2 is not compact. Hence, also C), () is
not compact.

Assume then that p < g¢. Since the inclusion icp) c(q) : ces(p) — ces(q)
is compact (cf. Proposition 3.4(ii)), it is clear from the factorization C, ., =
Te(p),e(q) Cp,e(p) that also C, ., is compact.

(iii) For p = q it follows from (1.6) that o(C)c()) is an uncountable set
and so Cy(p) «(p) is not compact. Suppose now that p < g. Since the inclusion
ie(p).e(q) * ce8(p) — ces(q) is compact (by Proposition 3.4(ii)), the factorization
Cetp)eta) = Te(p).cla) Cetp).c(p) ShOWS that Cegp)c(q) is compact.

(iv) For p = q we have Cci) c(p) = ipe(p) Ce(p)p- By part (iii) the operator
Ce(p),c(p) 18 not compact and hence, also C() , is not compact.

Assume now that p < q. Select any r satisfying p < r < ¢, in which case we
have Cip).g = Ce(r) g te(p)c(r) With Ce(y 4 continuous (by Proposition 3.5(iv)) and

ie(p),c(r) cOMpact (via Proposition 3.4(ii)). Hence, also C¢(y) 4 is compact. O

Our final result concerns the mean ergodicity and linear dynamics of Cesaro
operators.

Proposition 3.7. Let 1 < p < o0.

(i) The Cesaro operator Cpp = £, — €, is not power bounded, not mean
ergodic and not supercyclic.

(ii) The Cesaro operator Cyyp) o(p) : ces(p) — ces(p) is not power bounded,
not mean ergodic and not supercyclic.

Proof. (i) That C),,, is neither power bounded nor mean ergodic is Proposition
4.2 of [1]. It is known that the Cesaro operator C : CN — CN is not supercyclic,
[2, Proposition 4.3]. Since ¢, is dense in CY and the natural inclusion ¢, C CN is
continuous, the supercyclicity of Cp, in £, would imply that C : cN — CNis
supercyclic. Hence, Cp, € L(¥)) is not supercyclic.

(ii) Suppose that C,)c(p) is mean ergodic. According to (2.10) we have

limnﬂmw = 0 for 7, in L(ces(p)) and hence, o(Crp o)) S D, [10,
Ch. VIII, Lemma 8.1]. This contradicts (1.6). Hence, C¢(p) (p) cannot be mean
ergodic. Since power bounded operators in reflexive Banach spaces are always
mean ergodic, [19], it follows that Ce(p),c(p) 18 not power bounded. Arguing as in
part (i), since ces(p) is dense in CY and the inclusion ces(p) C CN is continuous,
it follows that C¢(,) ¢(p) is not supercyclic. O
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