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Highlights

•

Composition and sources of PM2.5 and PM2.5–10 are investigated in

South-eastern Italy.

•

Secondary organic and inorganic components were 43% of PM2.5 with

opposite seasonal trends.

•

Two forms of nitrate were observed: sodium nitrate and ammonium

nitrate (only in winter).
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•

PMF and mass-closure identified two soil sources accounting for 29% of

PM2.5–10.

•

Biomass burning is an important source at the urban background site

even during warm seasons.

Abstract

Comparison of fine and coarse fractions in terms of sources and dynamics

is scarce in southeast Mediterranean countries; differences are relevant

because of the importance of natural sources like sea spray and Saharan

dust advection, because most of the monitoring networks are limited to

PM10. In this work, the main seasonal variabilities of sources and processes

involving fine and coarse PM (particulate matter) were studied at the

Environmental-Climate Observatory of Lecce (Southern Italy).

Simultaneous PM2.5 and PM10 samples were collected between July 2013

and July 2014 and chemically analysed to determine concentrations of

several species: OC (organic carbon) and EC (elemental carbon) via

thermo-optical analysis, 9 major ions via IC, and 23 metals via ICP-MS.

Data was processed through mass closure analysis and Positive Matrix

Factorization (PMF) receptor model characterizing seasonal variabilities of

nine sources contributions. Organic and inorganic secondary aerosol

accounts for 43% of PM2.5 and 12% of PM2.5–10 with small seasonal

changes. SIA (secondary inorganic aerosol) seasonal pattern is opposite to

that of SOC (secondary organic carbon). SOC is larger during the cold

period, sulphate (the major contributor to SIA) is larger during summer.
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Two forms of nitrate were identified: NaNO3, correlated with chloride

depletion and aging of sea-spray, mainly present in PM2.5–10; NH4NO3

more abundant in PM2.5. Biomass burning is a relevant source with larger

contribution during autumn and winter because of the influence of

domestic heating, however, is not negligible in spring and summer, because

of the contributions of fires and agricultural practices. Mass closure

analysis and PMF results identify two soil sources: crustal associated to

long range transport and carbonates associated to local resuspended dust.

Both sources contributes to the coarse fraction and have different dynamics

with crustal source contributing mainly in high winds from SE conditions

and carbonates during high winds from North direction.
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1. Introduction

Particulate matter (PM) is one of the most studied atmospheric pollutant

due to its potential effects on local and regional air quality, on visibility, and

on global climate (Fuzzi et al., 2015). Moreover, there is a compelling

evidence that exposure to PM leads to adverse health effects including

respiratory and cardiovascular diseases, allergies, and premature mortality

(Pope et al., 2004, Delfino et al., 2005, Dockery and Stone, 2007,

Gauderman et al., 2015, Velali et al., 2016). Current studies indicate that

PM2.5 (particles with an aerodynamic diameter smaller than 2.5 μm) was

responsible in 2010 of over 3 million premature deaths per year worldwide

and 11.5% of these premature deaths are concentrated in Europe (Jerret,

2015, Lelieveld et al., 2015).

Atmospheric PM concentrations in Mediterranean basin are influenced by

air masses coming from Europe, Eastern Countries and Africa (Lelieveld et

al., 2002). Mediterranean Sea is bordered by 21 Countries accounting for >

400 million inhabitants (in 2011), mostly concentrated near the coasts

(Salameh et al., 2015). Being delimited at North by highly industrialised

southern Europe Countries and by Africa in the South, PM concentrations

are affected by a number of natural and anthropogenic sources such as road

traffic, biomass burning, shipping, Saharan dust advection, and sea spray

(Viana et al., 2014, Contini et al., 2014a, Salameh et al., 2015, Amato et al.,

2016, Merico et al., 2017). Mediterranean region is also characterised by

complex meteorology that favours aging of polluted air masses (Artíñano et

al., 2001). This plays an important role in formation of secondary particles

and in their successive aging with a high degree of oxidation of the organic

aerosol (Hildebrandt et al., 2011).
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Recent results of the AIRUSE project (Amato et al., 2016) evidenced that

the spatial variability and the sources of PM2.5 in southern Europe are less

known with respect to PM10 because the fine fraction is not widely

measured. As a consequence, there is also limited information on spatial

and temporal variability of coarse fraction (PM2.5–10), often linked to local

and natural sources, being an increasing concern for health (Brunekreef

and Forsberg, 2005). Therefore, further research efforts are needed to

investigate long-term trends of sources of fine and coarse PM fractions in

this area for air quality applications, for management of health risks, and

for analysis of PM impact to climate change in Mediterranean basin.

This work analyses the first year (between summer 2013 and summer 2014)

of simultaneous measurements of PM2.5 and PM10 concentrations and

chemical compositions collected at the Environmental-Climate

Observatory, recently built in South-Est Italy (in Lecce), regional station of

the Global Atmosphere Watch (GAW) network. Chemical composition is

studied evaluating the concentrations of nine major water-soluble ions, of

23 metals including elements of crustal and anthropogenic origin, and

evaluating the carbon content. Carbonaceous species were determined

separating elemental carbon (EC) mainly of primary origin from

combustion sources, and organic carbon (OC) having a primary and a

secondary component. Chemical composition was used for mass closure

analysis and for application of Positive Matrix Factorization (PMF) receptor

model to investigate seasonal variabilities of the contributions of the main

natural and anthropogenic sources to fine (PM2.5) and coarse size fractions.

Seasonal variabilities of secondary organic and inorganic aerosol

concentrations were investigated, including their correlation with local

meteorology, to improve the understanding of the main chemical and

physical processes governing the dynamics of PM in this area.

2. Experimental
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2.1. Measurement station and sampling

PM10 and PM2.5 daily samples were collected at the Environmental-Climate

Observatory of Lecce (Fig. S1), regional station of the GAW-WMO network

(Global Atmosphere Watch, see Cristofanelli et al., 2016). The Observatory

is located in south-eastern Italy (40°20′8″N–18°07′28″E) at 37 m a.s.l.

inside the University Campus of Lecce. The station could be characterised

as urban background because it is not strongly influenced by traffic or

industrial emissions (Chirizzi et al., 2017). In this site, pollution levels are

not significantly influenced by local specific sources rather by the

integrated contributions of all sources upwind. The Observatory site is

influenced by the activities (included traffic) inside the University Campus,

and by the diffused emissions of the town of Lecce and of the other small

villages located nearby the Campus. Moreover, the area is sometimes

downwind of the largest industrial settlements of the Apulia Region: the

area of Taranto (about 80 km in the NW direction) and the area of Brindisi

(about 30 km in the NNW direction).

Samples were collected daily for a one-year period between 17/07/2013 and

14/07/2014 using a low-volume (2.3 m3/h) dual channel (one for PM2.5 and

one for PM10) sequential sampler (SWAM, Fai Instruments) with automatic

detection of aerosol concentration using β-ray attenuation. Particulate

matter was collected on quartz filters (Whatman Q-grade, diameter 47 mm)

pre-fired for 2 h at 700 °C. Mass concentration measurements with this

instrument were in very good agreement with standard reference

gravimetric method and the typical uncertainty on measured mass

concentration was 2% on PM10 and 3% on PM2.5 (Dinoi et al., 2017).

Meteorological conditions, specifically wind velocity and direction,

temperature, cumulative rain, and relative humidity were obtained from

the meteorological station (Vaisala WXT520) of the Observatory.
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2.2. Chemical analysis

Roughly, one sample every three days was chemically analysed for a total of

226 simultaneous samples (113 for PM10 and 113 for PM2.5). Each filter was

divided into four quarters, three of them used for the chemical analysis and

one used for quality control: replication of specific analysis.

One quarter of the filter was used to obtain a punch (1 cm2) for the

determination of OC and EC concentrations via thermo-optical method

(Sunset OC/EC Analyser), following the NIOSH 5040 protocol. To ensure

the accuracy of the OC and EC analysis, the analyser was calibrated

(multipoint) using as external standard a sucrose solution. Blank filters

were also analysed to correct measured values, obtaining for OC an average

contamination level of 2.1 μg/cm2 (standard deviation ± 0.9 μg/cm2) and

negligible contamination for EC (< 0.1 μg/cm2).

The second quarter was used for determination of water soluble ions

concentrations via High Performance Ion Chromatography (Dionex DX600

IC system composed of an AS40 Autosampler, a GP50 Gradient Pump, an

LC25 Chromatography Enclosure, an ED50 Conductivity detector equipped

with a temperature compensated conductivity cell) with a 125 μL injection

loop. The extraction was done in two steps (20 min each in ultrasonic bath)

in 20 mL of ultrapure water (Milli-Q MΩ 18). Anions (Cl−, NO3−, SO42 −,

C2O42 −) were separated using a Dionex AS4A-4 mm column coupled with

IonPac AG14 guard column and 2.7 mM Na2CO3 and 1.0 mM NaHCO3 as

eluent in isocratic mode. Cations (Ca2 +, Na+, K+, NH4+, Mg2 +) were

separated using a Dionex (CS12A-4 mm) column coupled with IonPac

CG12A guard column and 20 mM MSA as eluent in isocratic mode. The

self-regenerating suppressors (Dionex ASRS ULTRA and Dionex CSRS

ULTRA II for anions and cations, respectively) were used in the

electrochemical suppression mode, operating at 50 mA to convert the
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eluent solution to weakly conducting water. The external standard

calibration was performed using single anions and cations solutions at

1000 mg/L (Inorganic Ventures). The laboratory control sample (LCS) was

prepared adding an analytes standard solution to pre-fired filters (and

successively analysed) once every 20 samples. The method detection limits

(MDLs) were obtained as three times the standard deviation of the signal of

blanks pre-fired filter measurements (n = 10), divided by the slope of the

calibration curve. The MDLs values (μg/L) were as follows: 10.2 (Na+), 6.1

(K+), 39.9 (NH4+), 6.9 (Ca2 +), 2.0 (Mg2 +), 4.9 (Cl−), 8.2 (NO3−), 140 (SO42

−), and 10.2 (C2O42 −). Accuracy and precision tests were performed, for Cl−,

Na+, K+, Ca2 + and Mg2 +, using certified material of fly ash (NIST SRM

1648a) and, for the other ions, on pre-fired quartz filters spiked with NH4+,

NO3−, SO42 − and C2O42 −. The values of relative standard deviation (RSD%)

were < 8% while the recovery values were between 88% (Ca2 +) and 108%

(C2O42 −).

The third quarter of filter was used to determine metals concentrations via

ICP-MS (Thermo X Series II). Each sample was microwave digested in

closed Teflon vessels using a two steps procedure (Aldabe et al., 2013). In

the first step the sample was digested in 3 mL HF + 3 mL H2O2 + 1 mL HCl

+ 4 mL HNO3 with the following temperature program: from room

temperature up to 180 °C in 15 min, dwell time of 15 min, up to 210 °C in 15

min and a final dwell time of 15 min. The samples were then cooled

overnight and evaporated to dryness for 20 min at 500 W. In the second

step after addition of 10 mL of 5% H3BO3, temperature was increased up to

120 °C in 20 min followed by a dwell time of 15 min and 30 min cooling.

Finally, samples were diluted to 25 mL in volumetric flask using water

(Milli-Q MΩ 18). The ICP-MS was tuned using a TUNE A solution

(Thermo) at 10 μg/L. The sample (1 mL) was transferred into 15 mL

graduate tube, 200 μL of EPA6020ISS solution at 500 μg/L (Inorganic

Ventures) and 8800 μL of 2% HNO3 solution were added, and was analysed

https://www.sciencedirect.com/science/article/pii/S0048969717322283#bb0005


following US EPA 6020A guidelines. The external calibration was

performed for the following elements: Al, As, Ba, Cd, Ce, Co, Cu, Dy, Fe, La,

Li, Mn, Nb, Nd, Pb, Rb, Sb, Se, Sr, Th, Ti, V, Zn using EPA6020CAL and

single analyte standard solutions (Inorganic Ventures). Quality control

checks were performed monitoring the intensities of all internal standards

for every sample analysis and analysing the laboratory control sample

(LCS), in each sample batch, at a frequency of one LCS every 20 samples.

The LCS were prepared by pre-fired quartz filters spiked with analytes of

interest before microwave procedure. The MDLs, calculated with the same

approach used for anions and cations, were between 0.89 μg/L (Al) and

0.001 μg/L (La). Metal recoveries, calculated using certified material of fly

ash (NIST SRM 1648a), ranged from 85% (Pb) to 112% (La) with RSD% <

15%.

Field blanks (20 for PM2.5 and 20 for PM10) were analysed following the

same procedure of the exposed samples. Concentrations of the different

species were obtained after subtraction of the average level present in the

blank samples. The concentration for a specific species and sample was

quantified if it was larger than the standard deviation σB of the blank filters;

otherwise, a threshold value equal to σB/2 was considered. In cases in

which the concentration was below the MDL, or not detectable above the

average variability of the field blanks, a concentration value equal to the

maximum between the MDL/2 and σB/2 was assumed. The uncertainty for

concentrations < MDL or not distinguishable from blanks were assumed to

be 100%, whereas the uncertainty for quantified concentration, Cij, of the

sample i relative to the species j, was calculated as in Cesari et al. (2014),

using the Eq. (1):

ΔCij=σBj/2+hjCij

The values of hj were calculated taking into account uncertainties

associated to chemical analysis and the obtained values were: 2.5% for Na+;

6% for NH4+; 2.8% for K+ and Ca2 +; 2.5% for Mg2 +; 4.5% for Cl−; 3.1% for

NO3−; 3.8% for SO42 −; 3% for C2O42 −; 5% for OC and EC; 9% for Al, Ti, Fe,
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and Sr; 5% for Sb, La, Pb, and Ce; 6% for Mn, and Rb; 7% for Dy, Cu, Zn,

Nb, and Th; 4% for Ba; 8% for Nd; 13% for V and Cd; 15% for Co; 16% for

Li; 22% for As; 33% for Se.

2.3. Source apportionment using Positive Matrix

Factorization

The characterisation of particle sources was done using the PMF approach

(Paatero and Tapper, 1994). The goal of PMF is to identify the number of

factors/sources, their chemical profiles, and the amount of mass, associated

with each factor/source, that contributed to measured PM concentrations.

In this work, the EPA PMF5 code, based on the application of the

Multilinear Engine (ME-2) was used. A single input data set was obtained

pooling together fine (PM2.5) and coarse (PM2.5–10) chemical composition.

This approach has been used in other PMF applications pooling together

samples belonging to particles of different sizes (Amato et al., 2009,

Contini et al., 2014b) or particles collected at different sites (Pandolfi et al.,

2011, Contini et al., 2012, Cesari et al., 2016a, Cesari et al., 2016b). The

approach has proven to increase the statistical significance of the analysis,

although it assumes that the chemical profiles of the sources do not vary for

the two size fractions. The input variables were classified using the

Signal-to-Noise (S/N) criteria (Paatero and Hopke, 2003), however, the

percentage of data above the detection limit was also used as

complementary criterion (Amato et al., 2016, Contini et al., 2016). The

species Na+, NH4+, K+, Ca2 +, Mg2 +, Cl−, NO3−, SO42 −, OC, EC, Ti, V, Fe,

Cu, Rb, Nb, Cd, Sb, and Pb were classified as “strong variables” and used as

they are in PMF5; the species C2O42 −, Al, Mn, Zn, As, Se, Sr, Ba, La, Ce, Nd,

Dy, and Th as “weak variables” and a tripled uncertainty was used for them

in PMF5. Li and Co were classified as “bad variable” and eliminated during

application of PMF5.
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The best solution for the base run was obtained using eight factors. The

determination of the optimal number of factors with a reasonable physical

meaning was achieved analysing the parameters IM (the maximum

individual column mean), and IS (the maximum individual column

standard deviation), obtained from the scaled residual matrix, together

with Q-values (goodness of fit parameter). In particular, for Q-values, the

solution to the system was the point where the slope of the curve showed a

marked change. When the number of factors increased to a critical value,

IM and IS parameters experienced a marked drop. The eight factors found

have a reasonable physical interpretation and the analysis of the scaled

residual are symmetrically distributed for almost all variables, meaning

that the model is able to reasonably fit each chemical species.

Successively, a constrained run was performed. The constraints used were:

set to zero SO4 in nitrate profile to improve the separation between

secondary inorganic components; NO3− pull down maximally and Na+ pull

up maximally in marine profile to improve the separation between fresh

and aged sea spray as shown in Cesari et al. (2016a); K+ pull up maximally

in biomass burning profile that gave good results in source apportionment

in central Italy (Contini et al., 2016). The maximum change in Q allowed for

each constraint was 5% and the final dQ with respect to base run was 6.4%

that is comparable with the dQ used in different PMF applications (Amato

et al., 2016, Cesari et al., 2016a, Contini et al., 2016).

PMF5 results reconstruct reasonably well measured concentrations for both

size fractions. The fractions unexplained by the model (i.e. the average

difference between measured and reconstructed concentrations) is 3% for

PM10 and − 3.5% for PM2.5. The linear fit of the correlation between PM10

reconstructed and measured concentrations had a slope of 0.93 (± 0.05)

and an intercept of 1.8 (± 1.4) μg/m3. The same analysis for PM2.5 gave a

slope of 1.03 (± 0.03) and an intercept of 0.1 (± 0.7) μg/m3.
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The uncertainties on PMF5 estimated factor profiles and contributions

were evaluated using the bootstrap method (Paatero et al., 2014). The

bootstrap of the “constrained solution” (applied with 100 runs with random

seed, block size suggested 23, and R = 0.6) gave a good mapping of the

PMF5 solution with unmapped cases limited to 1% (for carbonates and

nitrate) and to 2% for crustal with the other five profiles completely

mapped. The swap between the profiles was limited to 10% for all profiles

with the exclusion of carbonates.

The analysis of G-space plot performed for both the base and the

constrained solutions revealed that no edges are evident suggesting that the

factors found are linearly independent.

3. Discussion of measured concentrations

3.1. Seasonal variabilities of the different chemical

species

The yearly average PM2.5 concentration was 18.7 (± 11.3 standard

deviation) μg/m3; the yearly average concentration of PM10 was 29.5 (±

19.2 standard deviation) μg/m3.

Average (± standard deviations) of measured concentrations are reported

in Table S1, separating the warm (spring and summer) from the cold

(autumn and winter) seasons. The statistical test of

Wilcoxon-Mann-Whitney has been used to individuate the species that had

statistically significant (at p < 0.05 probability level) different median

concentrations comparing the cold seasons (with an average temperature

13.8 °C) with the warm seasons (average temperature 21.7 °C). It clearly

appears that chemical species in PM10 and PM2.5 could be divided into

three groups. The first group includes the species EC, OC, K+, Cl−, NO3−,

Sb, and Pb that had seasonal variabilities with median concentrations
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larger during the cold seasons in both size fractions and species that have

median concentrations larger during the cold season only in PM2.5 (Ni, As,

Rb, and Ba). These species are likely associated to combustions sources like

traffic, EC, OC, Sb, and Pb (Viana et al., 2006, Pakbin et al., 2011, Pulong et

al., 2017) and biomass burning, EC, OC, and K+ (Almeida et al., 2006,

Cesari et al., 2016b), to sea spray (Cl−) (Jain et al., 2017), and to secondary

nitrate (NO3−). The second group includes the species that presented lower

median concentrations during the cold seasons in both size fractions

(NH4+, SO42 −), only in PM2.5 (Ti and V) or only in PM10 (Cr, La, and Ce).

These species are associated to secondary sulphate, to crustal/road dust

material (Cr, La, Ce, and Ti) (Amato et al., 2014, Landis et al., 2017) and to

ship emissions (V) (Sippula et al., 2009). The third group includes species

that do not have statistically significant different median concentrations in

the two periods: Na, Mg, Ca, C2O42 −, Li, Al, Mn, Fe, Co, Cu, Zn, Se, Sr, Nb,

Cd, Nd, Dy, Th.

Concentrations of measured species represent, on average, 56% (± 9%

standard deviation) of PM10 and 61% (± 10%) of PM2.5. In PM10, the

average distribution was 2.7% (± 2.2%) EC; 19.3% (± 16.8%) OC; 18.2% (±

11.2%) sum of SO42 −, NH4+ and NO3− (species associated with secondary

inorganic aerosol, SIA); 11.8% (± 9.8%) sum of the other water soluble ions;

2.1% (± 2.3%) metals. In PM2.5, the average distribution was 3.1% (± 2.2%)

EC; 26.9% (± 25.8%) OC; 22.4% (± 16.0%) sum of SO42 −, NH4+, and NO3−;

6.1% (± 3.7%) sum of the other water soluble ions; 1.9% (± 1.5%) metals.

3.2. Enrichment factors of PM2.5 and PM2.5–10

The crustal enrichment factors (EFs) furnish information to identify the

elements that have mainly a crustal origin (L. Zhang et al., 2008). The EF

compares the ratios of the atmospheric concentrations of various elements

with the corresponding ratios in geological material (Watson et al., 2002).
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This approach is often used together with source apportionment based on

receptor models (Contini et al., 2012, Tositti et al., 2014, Amato et al., 2016,

Ledoux et al., 2017) to support assumptions for receptor species and

sources for which little information is available (Belis et al., 2013).

The element chosen for reference is Fe to allow comparison with a previous

work in this area (Contini et al., 2010) and the upper-crust composition in

Wedepohl (1995) was used as geological reference. Enrichment factors

calculations were also performed using Al as reference element, leading to

the same conclusions regarding the elements having mainly crustal or

anthropogenic origin. The EFs were analysed following the two-threshold

method defined in Cesari et al. (2012) in which EF < 10 indicates an

element with relevant crustal contribution; EF > 20 indicates a likely

anthropogenic origin; 10 < EF < 20 indicates a mixed origin with important

contribution from both natural and anthropogenic sources.

Results are reported in Fig. 1 for both the fine and the coarse fraction, also

including the relative abundances of the different chemical species in each

fraction. The species Fe, Sr, and Ti, generally of crustal origin present a low

EF and are mainly (> 50%) contained in the coarse fraction (PM2.5–10). For

these elements, the EFs are similar in the fine and coarse fraction; for all

other elements the EFs of the coarse fraction is lower than those of the fine

fraction. The elements Mn, Al, La, Ce, Ba, Nb, Nd, Rb, Co, Li, Dy and Ti

have low EFs being mainly of crustal origin in both size fractions.

Lanthanides occur in the order of abundance Ce > La > Nd in both size

fractions as it happens in natural crustal dust (Hsu et al., 2016). There is a

strong correlation (Spearman coefficient 0.75, p < 0.05) between Ce, La,

and Nd (in both size fractions PM2.5 and PM10). The average ratio Ce/La is

2.3 (± 0.2), for both size fractions, comparable with the typical ratio (about

2) observed in crustal dust (Amato et al., 2016) confirming the mineral

crustal origin of these species. V is essentially crustal in the coarse fraction
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but has a relevant anthropogenic contribution in PM2.5 (EF > 10). The

anthropogenic influence on V could originate by heavy oil burning,

including shipping, that was relevant in the area near the coast, especially

in PM2.5 (Viana et al., 2009, Gregoris et al., 2016, Merico et al., 2017). The

elements Pb, As, Cu, Zn, Cd, Sb, and Se are enriched and likely mainly of

anthropogenic origin in both size fractions. The ratio La/V in crustal

particles is variable between 0.25 and 0.5 (Kamber et al., 2004). The La/V

ratios observed are 0.12 (± 0.02) in both size fractions confirming a

possible influence of industrial emissions of V due to heavy oil combustion

(Kamber et al., 2004, Hsu et al., 2016).
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Fig. 1

3.3. Secondary organic and inorganic aerosol

Regarding carbonaceous species, while soot has a primary origin, OC can be

both primarily emitted but also formed in the atmosphere through

condensation to the aerosol phase of low vapour pressure compounds

emitted as primary pollutants or formed in the atmosphere (Robinson et
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al., 2007, Gentner et al., 2012). Because of this, the ratio OC/EC in aerosol

fractions differs widely, both in space and seasonally, and is a useful

diagnostic ratio that could give information regarding the typology of the

sampling sites and emission sources, and also regarding the processes

happening in atmosphere which can lead to the formation of secondary

organic compounds. In this study, the average OC/EC ratio was 7.8 (± 3.9)

in PM10 and 8.8 (± 4.9) in PM2.5, in reasonable agreement with typical

ratios observed at other sites of the same typology in Italy (Sandrini et al.,

2014) and in Europe (Escudero et al., 2015). However, OC/EC has a

seasonal variability with a minimum value in summer of 7.7 (± 0.5) and a

maximum of 11.9 (± 1.4) in winter in PM2.5. The OC/EC ratio depends on

both the proximity of the emissions and the relative weight of road traffic

and biomass burning. The OC/EC ratio of road traffic emissions varies

between 1.4 and 5 for gasoline catalyst vehicles and from 0.3 to 1 for diesel

vehicles (Salameh et al., 2015, Amato et al., 2016). Larger values (between 5

and 12) of this ratio are generally found for biomass burning emissions

(Szidat et al., 2006). The values observed at this site are larger than those

associated to fossil fuel combustion and they are compatible with an urban

background site located at distance from the road traffic hotspots and

influenced by biomass burning especially in the cold period.

Andreae and Merlet (2001) reported values of nss-K+/EC between 0.2 and

1.1 as typical for biomass burning and nss-K+/EC approaching zero for

fossil fuel emissions where nss-K+ = K+ − 0.129Na+ indicates the

non-sea-salt water soluble potassium. Measured nss-K+/EC ratios in this

study are significantly larger than zero: 0.14 (± 0.05) during the warm

seasons and 0.29 (± 0.05) during the cold seasons, suggesting a

contribution of biomass burning to EC especially during the cold seasons.

The correlation of OC with K+ (Spearman coefficient 0.79 (p < 0.05) in

PM2.5 and 0.75 (p < 0.05) in PM10) is comparable with that between OC
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and EC (Spearman coefficient 0.79 (p < 0.05) in PM2.5 and 0.82 (p < 0.05)

in PM10). EC is a tracer of road traffic emissions (Amato et al., 2016) while

K+ is a tracer of biomass burning emissions (Almeida et al., 2006). The

correlations found suggest that both of these sources contribute to

measured concentrations.

Organic matter (OM) could be evaluated as OM = 1.6OC where the factor

1.6 accounts for the non-C atoms in organic matter mass concentration

(Sandrini et al., 2014). OM accounted for 31% of PM10 and 43% of PM2.5.

The OC/EC minimum ratio method was used to estimate the secondary

organic carbon SOC concentrations (Pio et al., 2011) applying the equation:

SOC=OC−OCECminEC

The

OCECmin

ratios were determined separately for the warm and the cold periods

looking at the minimum slopes (Fig. 2). The ratios for PM2.5 were 1.6 (cold

season) and 2.9 (warm season). The ratios for PM10 were 2.0 (cold season)

and 3.3 (warm season). The differences observed between the warm and

the cold seasons were likely related to the different influence of biomass

burning compared to road traffic during the cold and warm seasons. This is

consistent with results obtained by other studies (Shubhankar and Ambade,

2016, Blanchard et al., 2016, Zeng and Wang, 2011). SOC was mainly

present in the PM2.5 fraction, representing on average, 76% of total OC in

PM2.5 and 66% of total OC in PM10. The relative share of primary (POC =

OC-SOC) and secondary organic carbon in PM2.5 has a clear seasonal

variability (Fig. 3). Autumn and winter seasons have a SOC/OC ratio in

PM2.5 between 0.80 (± 0.04) and 0.86 (± 0.02) larger than the values

observed during spring and summer (around 0.60 ± 0.04).
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Fig. 3

The non-sea-salt sulphate was evaluated as nss-SO42− = SO42− − 0.25Na+, it

represented 91.9% of total sulphate in PM10 and 97.6% in PM2.5. There is a

strong correlation (Spearman coefficient 0.88 (p < 0.05) in PM2.5 and 0.74

(p < 0.05) in PM10) between SO42 − and NH4+ indicating that, on average,

secondary sulphate is present as a mixture of ammonium sulphate and

bisulphate. Its concentration (nss-SO42− + NH4+) is, on average, 3.4 μg/m3

in PM2.5 and 3.7 μg/m3 in PM10. The ratio nss-SO42 −/NH4+ in PM2.5 is 2.9

near the stoichiometric ratio (2.66) expected for (NH4)2SO4 indicating that

the dominant form of secondary sulphate is, on average, ammonium

sulphate.

In Fig. 4 the seasonal variability of secondary inorganic species (SIA

indicates the sum of nitrate and ammonium sulphate) and SOC in fine and

coarse fractions are reported. Results shows that nitrate contribution is

larger on coarse fraction compared to PM2.5, instead ammonium sulphate

and SOC contribute mainly to PM2.5. Looking at PM2.5 fraction, there is a

decrease of nitrate contribution during the warm seasons (spring and

summer) because of its thermal instability (Querol et al., 2008, Pey et al.,

2009) and likely for the lower NOx emissions of traffic and biomass

burning during the warm period in this area (Cesari et al., 2016b).

Secondary ammonium sulphate has a larger contribution during the warm

seasons (spring and summer) compared to the cold seasons (autumn and

winter) because the formation of ammonium sulphate is favoured at high

temperatures (Querol et al., 2008, Ripoll et al., 2015). The seasonal

variability of SIA follows that of ammonium sulphate which is most

abundant than nitrate. In coarse fraction, nitrate contribution is similar in

the different seasons and the same happens for SOC, however, ammonium

sulphate is lower during winter and spring. Therefore, the total secondary

contribution to the coarse fraction is relatively limited and variable between

9% (in winter) and 13% (in autumn).
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Fig. 4

SOC has a seasonal variability opposite to that of SIA with larger

concentrations during the cold period, similarly to what has been observed

for OC. Low temperature favours the formation of SOC via gas-to-particle

conversion of oxidized products of volatile organic compounds present in

the atmosphere (Sahu et al., 2011). The opposite variabilities of SIA and

SOC bring limited seasonal changes of the total secondary fraction of PM2.5

variable between 38% during spring and 45% during autumn/winter. Using

the same factor (1.6) to account for non-C atoms in secondary organic
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matter (SOM = 1.6SOC) the total secondary mass (SIA + SOM) is variable

from 33% to 43% of PM10 and from 46% to 62% of PM2.5. These

percentages are comparable with those observed in Barcelona (Spain) and

lower than those observed in Northern and Central Italy (Amato et al.,

2016).

In order to better understand the seasonal variability of SIA, the equivalent

concentrations of NH4+, SO42 −, and NO3− in PM2.5 are reported in Fig. 5. In

spring, autumn and summer, ammonium concentrations are lower than

what is necessary to completely neutralize sulphate, however, in winter

there is an excess of ammonium with respect to sulphate suggesting the

possibility of ammonium nitrate formation. Considering also the relatively

low chloride depletion (discussed in Section 3.4) in sea-spray observed in

winter, it is likely that the two forms of nitrate (sodium and ammonium

nitrate) coexist mainly during winter.
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3.4. Sea-spray and crustal sources

The correlations observed between Na+, Cl−, and Mg2 + indicates that the

site is influenced by sea-spray (Querol et al., 2001a). The yearly averages of

Cl−/Na+ ratios were 0.76 (± 0.06) in PM10 and 0.94 (± 0.11) in PM2.5,

significantly lower than the expected value (1.81) in sea water (Prodi et al.,

2009). This indicates that, on average, sea-spray reaching the site is

relatively aged as consequence of chemical reactions involving NaCl and

nitric acid which lead to the formation of NaNO3 and gaseous HCl

(McInnes et al., 1994, Pio et al., 1996, Zhao and Gao, 2008). This explains

the chloride depletion and, in turn, the low Cl−/Na+ that was observed also

in previous studies in the same area (Contini et al., 2014b, Guascito et al.,

2015). The yearly average percentages of depleted Cl− are 60% (± 3%) in

both size fractions. The sea spray contribution, evaluated as Cl− + 1.4468 ∗

Na+ (Marenco et al., 2006), is reported in Table S1. The percentages of

depleted Cl− are comparable in fine and coarse fractions and are maximum

during the warm seasons as shown in Fig. 6a. Consequently, the Cl−/Na+

ratio is lower during warm seasons with respect to cold seasons. The sea

spray contributions to PM2.5 and to coarse fraction, for the different

seasons, are compared in Fig. 6b. Sea spray ranges from 2.3% to 3.5% in

PM2.5 and from 12.2% to 19.4% in the coarse fraction. Thereby, as expected,

this source influences mainly large particles. The minimum contribution to

measured concentrations is observed during summer.
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Fig. 6

Crustal contribution can be calculated summing the concentration of

elements (as metal oxides) generally associated with mineral dust: Al, Si,

and Fe plus the insoluble fraction of K and Ca (indicated with an asterisk)

as 1.15 (1.89 Al + 2.14 Si + 1.67 Ti + 1.4 Ca* + 1.2 K* + 1.36 Fe) and

carbonates calculated from non-sea-salt calcium and magnesium as 1.5

nss-Ca2 + + 2.5 nss-Mg2 + (Perrino et al., 2014, Cesari et al., 2016c). The

factor 1.15 takes into account sodium and magnesium oxides (Marcazzan et

al., 2001). The Si concentrations, not measured, were estimated

considering that 3Al2O3 = SiO2 thereby giving Si = 2.65 Al (Querol et al.,
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2001b). The typical ratio between water soluble and total concentration of

Ca and K, measured in the Apulia (SE Italy) region (Contini et al., 2010)

were used. The non-sea-salt component of Ca2 + was evaluated as nss-Ca2 +

= Ca2 + − 0.038 Na+ and that of Mg2 + as nss-Mg2 + = Mg2 + − 0.129 Na+.

The ionic balance indicates a good correlation between total anions and

total cations concentrations in PM10 (Fig. 7a). However, there was an anion

deficit (deficit in negative charges). The same apply for PM2.5 (not shown)

even if the deficit was lower in relative terms about 7.1% (in terms of

charges) in PM2.5 compared to 27.7% in PM10. Organic ions, such as

formate and acetate, could contribute to the ionic balance; however, the

presence of an anion deficit was used, in several sites, to infer the presence

and to estimate the concentration of carbonates (CO32 −/HCO3−) in aerosols

(Nicolás et al., 2009, Arsene et al., 2011, Shen et al., 2011, Contini et al.,

2014b). Fig. 7b shows that the observed anion deficit is well correlated with

the sum of nss-Ca2 + and nss-Mg2 +. This suggests the presence of a

contribution of calcium and magnesium carbonates due to resuspended

local soil that is mainly limestone thereby having relevant Ca content

(Cesari et al., 2012).
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Fig. 7

The crustal and carbonates contributions to PM2.5 and to the coarse

fraction are reported, for the different seasons, in Fig. 8, including the total

mineral contribution calculated as the sum of crustal and carbonates

contributions. Results show that both crustal and carbonates components

have larger concentrations in the coarse particles, however, their

contributions to fine particles are not negligible. This was observed also in

other studies, for example, crustal and carbonates were observed in PM2.5

in several sites (Ho et al., 2011, Arsene et al., 2011, Cesari et al., 2014, Cesari

et al., 2016b). Carbonates contributions present a clear seasonal variability
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with a decrease in winter and spring on both size fractions. Crustal

contributions have similar contributions to PM2.5 for the different seasons

instead a clear variability is observed in the coarse fraction with

contributions in winter and spring lower than those in summer and

autumn. This difference among the two size fractions is observed also for

the total mineral contribution that is similar during the four seasons for

PM2.5 but the coarse fraction decreases passing from the warm to the cold

seasons. The decrease of total mineral contribution in coarse fraction is

correlated with precipitations. The percentages of sampling days with

precipitations (> 1 mm H2O/day) are 6.5% (summer), 17.6% (autumn), 35%

(winter), and 39.3% (spring). This suggests that local dust due to

resuspension decreases when soil humidity increases and that wet

scavenging remove more efficiently coarse particles.
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Fig. 8

4. Results of PMF5 source apportionment

4.1. Source profiles

The profiles of the different factors, with the corresponding uncertainties,

are shown in Fig. S2. The first factor was associated to marine contribution

being loaded with Na+ and Cl−. The second factor was characterised by K+

and, to a lower degree by OC and EC suggesting its association with

biomass burning and fires (Almeida et al., 2006, Zhang et al., 2008b). The

third factor represents likely an industrial contribution characterised

mainly by Pb. The fourth factor was loaded with EC, OC, Cu, Zn, Mn, and

Sb and it represented the contribution of road traffic. The fifth factor was

characterised by Al, Ti, V, Fe, Sr, Nb, La, and Ce that are elements generally

associated to crustal minerals as it was confirmed by the analysis of the

crustal enrichment factors (Section 3.2). The sixth factor was loaded with

Ca2 + and Mg2 + and it represented resuspended dust contribution. This

contribution includes carbonate/bicarbonate (likely calcium and

magnesium carbonate), often observed in coarse aerosol, that could

originate from local crustal material (Contini et al., 2014b). The presence of

carbonates/bicarbonates was also inferred by the analysis of the ionic

balance showing an anion deficit (Fig. 7) associated to the CO32 −/HCO3−

ions not quantified by ion chromatography. It is interesting to observe that

the ability of PMF5 to separate these contributions is likely due to the

different dynamics of crustal and carbonates materials. This was observed

also in other works in Southern (Cesari et al., 2016b) and Central Italy

(Amato et al., 2016, Contini et al., 2016). Crustal material is associated to

long-range transport (including advection of Saharan dust) instead

carbonates are associated to local resuspension. The seventh and eighth

factors represent secondary nitrate and sulphate respectively.
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The PMF5 run, applied with the constraints mentioned in Section 2.3,

identifies a secondary nitrate component of sodium nitrate due to the

interaction of nitric acid with marine aerosol. However, the balance

between ammonium, nitrate and sulphate (Fig. 4) suggested the presence

of ammonium nitrate during winter at low temperature. As a consequence,

nitrate during winter period was underestimated by the PMF5

reconstruction. Therefore, a new PMF5 run was performed with explicit

constraints to increase nitrate contribution limited to the winter period.

This allowed finding an ammonium nitrate profile shown in Fig. S2. The

contribution to measured concentration of both forms of nitrate was

calculated from this PMF5 solution.

4.2. Seasonal variabilities of source contributions and

their correlation with meteorology

The seasonal variabilities of source contributions to PM2.5 and to PM10

obtained using PMF5 are reported in Fig. 9. The yearly average

contributions for PM2.5 and coarse fractions are compared in Fig. 9c.

Marine, crustal, and carbonates sources are mainly present in the coarse

fraction with seasonal variabilities in reasonable agreement with the

behaviours inferred by the mass closure analysis (Section 3.4). Ammonium

nitrate and sulphate are larger in PM2.5 fraction with respect to the coarse

fraction and present an opposite variability with ammonium sulphate

reaching maximum concentration in summer and ammonium nitrate in

winter. The comparison with mass closure analysis showed that PMF slight

overestimated sulphate. Industrial contributions are larger on PM2.5 with

respect to the coarse fraction and limited to 4–5% of mass concentration.

Traffic is an important source in both size fractions with a clear seasonal

variability with larger concentrations in autumn and winter, likely because

of the increased vehicular traffic at the University Campus during the cold

period. Biomass burning is one of the most important source at the site
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studied. It is mainly associated to the fine fraction and it has the obvious

seasonal variability with larger contributions during autumn and winter,

however, its weight is not negligible in spring and summer even if domestic

heating are not present. This was observed also in other areas in southern

Italy (Cesari et al., 2014) and it is likely due to a contribution from fires and

agricultural practices. This is in agreement with Cristofanelli et al. (2017)

who reported very high CO values (a “golden” tracer for combustion

emissions) during winter 2015 but still high values during spring-summer

for this area.
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Seasonal variabilities put in evidence a correlation of composition and

sources with temperature. To better analyse the correlation with

meteorology, an average wind velocity and a prevalent wind direction was

calculated for each measurement day. These values were used to produce

pollution roses for the different sources dominant in PM10 (Fig. S3) and in

PM2.5 (Fig. S4). In Figs. S3 and S4 the average contribution of each source

is reported as a colour scale, the distance from the centre is proportional to

the wind velocity and the angular position represents the wind direction.

Fig. S3 shows that larger crustal contributions are associated to relatively

high wind velocities from SE direction, similar to the pattern observed for

marine contributions. Instead, carbonates are mainly associated to high

wind velocity from the North direction. This difference in the dynamics of

carbonates and crustal dust is likely one of the reason that allowed a clear

separation of these sources in PMF results. Fig. S4 shows a pollution rose

for PM2.5 different from that of PM10 because large PM2.5 concentrations do

not have a specific directionality and happens at low wind velocity. A

similar pattern is observed also for biomass burning, traffic and ammonium

nitrate contributions. Instead, sulphate and industrial contributions have a

different pattern with larger values associated to high winds from North.

The similarity of the sulphate and industrial pollution roses suggests that

secondary sulphate originates at larger distances from the site where

industrial emissions of SO2 are present and could be partly converted in

sulphate.

A back-trajectories analysis has been performed in order to infer potential

locations of distant sources using Concentration Weighted Trajectory

(CWT) analysis (Stohl, 1998, Hsu et al., 2003, Squizzato and Masiol, 2015).

Here, the CWT approach (Seibert et al., 1994, Hsu et al., 2003) was chosen

since it is suitable to quantify long-range transported aerosol (Jeong et al.,

2011). Details of the method used and CWT results are summarized in

Supplementary material. Back-trajectories were computed by the Hybrid
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Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) model (Stein

et al., 2015, Rolph, 2016) using the Global NOAA-NCEP/NCAR Reanalysis

meteorological data. The HYSPLIT parameters were set as: total run time

72 h, start time at midnight, starting height of 100 m above ground level

(agl) at the measurement site. This height allowed an effective transport

within the mixing layer, as suggested elsewhere (Begum et al., 2005, Jeong

et al., 2011, Westgate and Wania, 2011). Calculations were also performed

starting at 50 m (agl) and no significant differences were observed (not

shown). Assuming that the use of multiple trajectory–based models over

long period may yield more robust results than using individual trajectories

(Squizzato and Masiol, 2015), multiple back-trajectories were simulated

starting every 3 h.

In Fig. S5 CWT results for biomass burning, industrial, ammonium nitrate,

sulphate and traffic contributions are shown for the PM2.5 fraction. The

analysis shows for biomass burning probable source areas over the

countries of Albania, Macedonia and North of Greece. This evidence

confirms previous investigations carried out in Greece (Saffari et al., 2013)

indicating a growing impact of biomass burning due to the switch from

heating oil to cheaper material, such as wood, as burning material in

residential heating for economic crisis. Industrial and secondary

ammonium nitrate contributions present similar source areas (mainly over

central and northern Italy) indicating a probable common origin.

Conversely, the secondary sulphate seems to be associated to a more

extended source area, reflecting different effects due to multiple sources i.e.

industrial and/or ship traffic in the Adriatic Sea (Merico et al., 2017) or the

effect of different meteorological conditions. Finally, it is quite interesting

to note that traffic source does not show a long-range source area,

highlighting the local nature of this source.
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In Fig. S6 CWT results for carbonate, crustal, marine and sodium nitrate

are shown for the PM10 fraction. The analysis showed a main local source

area for carbonate and crustal contributions also highlighting the presence

of a source area in North Africa, confirming that the Mediterranean area is

influenced by crustal matter long-range transport events. As expected, the

source area of the marine contribution is represented by the Ionian and

Libyan Sea. More interesting is the area reported for sodium nitrate,

indicating the contribution coming from both the sea and lands of south

Italy and south Est Europe. This is probably due to interaction between

fresh sea spray and polluted air with consequent formation of aged sea salt

(sodium nitrate).

5. Conclusions

An analysis of seasonal variabilities of fine (PM2.5) and coarse (PM2.5–10)

particulate matter concentrations and composition was performed at an

urban background station in Southern Italy. The seasonal variability of the

contributions of nine sources (marine, sulphate, sodium nitrate,

ammonium nitrate, biomass burning, traffic, industrial, crustal, and

carbonates) was investigated using both mass closure and PMF5 receptor

models.

Results show that marine contributions, dominant in the coarse fraction,

are mainly associated with high winds from SE direction and they are larger

during the cold period (autumn and winter) with respect to the warm

period (spring and summer). Chloride depletion is relevant in both size

fractions with a clear seasonal variability reaching a minimum of 26% (in

PM2.5) and 43% (in PM2.5–10) during winter. This depletion is correlated

with the formation of sodium nitrate in the coarse fraction.

Organic and inorganic secondary aerosol accounts for 43% of PM2.5 and

12% of PM2.5–10 with small seasonal changes. However, seasonal pattern of
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SIA is opposite to that of SOC. SOC is larger during the cold period and

sulphate (the major contributor to SIA) is larger during summer. Two

forms of nitrate were identified: sodium and ammonium nitrate. NaNO3 is

mainly present in the coarse fraction during spring, autumn and summer

while NH4NO3 is present only during winter and it is more abundant in the

fine fraction like sulphate.

Mass closure analysis and PMF results identify two soil sources: crustal

associated mainly to long range transport and carbonates associated to

local resuspended dust. Both sources contributes mainly to the coarse

fraction and have different dynamics with crustal source contributing

mainly in high winds from SE conditions and carbonates during high winds

from North direction. Total mineral contribution does not present a

seasonal variability in PM2.5 but, in the coarse fraction, it decreases during

the cold seasons, likely because of the scavenging effect of precipitations.

Biomass burning is a relevant source for this area with larger contribution

during autumn and winter because of the influence of domestic heating,

however, this source is not negligible in spring and summer, likely because

of the contributions of fires and agricultural practices.

Industrial contribution is mainly in PM2.5 contributing for about 4–5% of

PM2.5 and it is correlated with wind velocities and directions similarly to

secondary sulphate suggesting a common origin.

Traffic is a source contributing to both size fractions (PM2.5 and PM2.5–10).

Its weight on PM mass concentrations increases during autumn and winter.

Traffic contribution has not a specific directionality and it is larger at low

wind velocities with limited ventilation.
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