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Abstract

This paper focuses the problem of modeling manufactured surfaces for statistical pro-
cess control. The application of Multilinear Principal Component Analysis (MPCA) is
introduced. MPCA is the generalization of the regular Principal Component Analysis
(PCA) where the input can be not only vectors, but also tensors. The objective of this
work is basically to explore the MPCA, as well as some basic concepts of multilinear
algebra, for modeling manufactured surfaces. A real case study concerning cylindrical
surfaces obtained by a lathe-turning process is taken as reference. The measurements
related to a specific surface are stored in a matrix addressed by 2 index variables, while
the observed data set related to several surfaces is stored in a 3rd-order tensor ad-
dressed by 3 indexes. Since the targeted application involves only the use of 3rd-order
tensors of real entries, in this study the implementation of MPCA is limited to this
specific case. Although a specific geometry is used herein as reference case study, any
2.5-dimensional surface (i.e., where scalar measurements are sampled for each item by
using a fixed grid of two spatial index variables) can be modeled with the proposed
MPCA-based approach.
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Introduction

In modern statistical process control, an increasing attention is being devoted to profile

monitoring, where the quality characteristic of interest can be represented as a function of

one or more explanatory variables.

Starting from the simplest case of linear profiles, the literature on profile monitoring has

now covered di↵erent parametric and nonparametric approaches, as well as several appli-

cation domains (an extensive overview of profile monitoring can be found in the book of

(Noorossana et al., 2011)). Among the di↵erent application domains, one of growing inter-

est in the manufacturing field concerns geometric tolerances (e.g., roundness or circularity,

straightness, cylindricity, flatness or planarity), for which the quality characteristic of inter-

est consists of a profile or surface describing the shape of the manufactured item (Colosimo

and Pacella, 2007; Colosimo et al., 2008; Colosimo and Pacella, 2010; Colosimo and Pacella,

2011; Colosimo and Senin, 2011; Colosimo et al., 2014).

Although most of the profile monitoring researches dealt with curves modeled as a scalar

function of one single location variable (i.e., y = f(x)), when the quality is related to

the shape of manufactured item constrained by a geometric tolerance, the techniques and

methods presented in the existing literature cannot be simply applied. Recently, two cases

were highlighted in the literature, with reference to geometric specification often used in

industry (Colosimo and Pacella, 2011; Colosimo et al., 2010; Colosimo et al., 2014). In

(Colosimo and Pacella, 2011), the straightness of cylinder axes was considered. According to

the ISO standard (ISO, 2012), a spatial straightness error must be considered and axis must

be modeled as a curve not lying in a plane. To this aim, performances of di↵erent modeling

approaches, all of them based on the Principal Component Analysis (PCA), were compared

by the authors. In (Colosimo et al., 2010; Colosimo et al., 2014), cylindricity of lathe-turned

items was considered. According to the standards (ISO, 2012), the cylindricity tolerance

refers to the deviation of the actual shape from an ideal cylindrical surface. In (Colosimo

et al., 2010), a method was presented, which combined linear regression model and spatial

autoregressive errors with the objective to represent the spatial correlation characterizing

adjacent points on each cylindrical surface. Control charts were implemented in order to

monitor model coe�cients to detect changes of the surface pattern. In (Colosimo et al.,

2014), a Gaussian Process (GP) was introduced for cylindrical surface modeling. The use

of GPs instead of regression allows one to simplify the modeling step because selection of
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the appropriate regressor variables is not required. In order to detect change of the surface

pattern, control charts were implemented to monitor the GP-predicted deviations of the

surface from the in-control pattern.

The present research goes in the same direction of the cited ones, as it faces the problem

of modeling a 2.5-dimensional (2.5D) surface, where measurements z are sampled for each

item using a fixed grid of two spatial index variables, i.e., z = f(x, y), where (x, y) represents

the location point where z is measured. To this aim a PCA-based technique is explored.

It is known that regular PCA can be used as an e↵ective tool for dimension reduction

and variation characterization of one-dimensional arrays of data, e.g., curves lying in a plane

and sampled on a fixed grid of spatial locations (Colosimo and Pacella, 2007). However,

regular PCA cannot be directly applied to 2.5D surfaces since measurements in each sample

are arranged as two-dimensional arrays of data (matrices). One approach to overcome this

limitation is to reshape measurements in each sample to a vector and then apply regular

PCA. However, this approach breaks the correlation structure in the original data, and loses

potentially more compact or useful representations that can be obtained in the original form.

The Multilinear PCA (MPCA) (Lu et al., 2008) is a generalization of the regular PCA

where the input can be not only vectors, but also tensors. A tensor is defined as a multidi-

mensional array of data. For example, a data set of 2.5D surfaces, which share the same grid

of spatial location variables, be viewed as an 3rd-order tensor. Tensor-based PCA methods,

such as MPCA, directly analyse a tensor without reshaping it into a vector, thus preserving

the tensor structure of the original data set. Recently, tensor-based PCA methods were used

in manufacturing both for statistical process control and fault diagnosis (Paynabar et al.,

2013; Yan et al., 2015). This paper aims to explore the MPCA in order to define an approach

for modeling 2.5D surfaces for statistical process control in manufacturing. The case study of

lathe-turned items presented in (Colosimo and Pacella, 2011) is considered herein. For each

lathe-turned item, a 2.5D geometric feature is taken into account, namely the cylindrical

surface of each item (subjected to cylindricity tolerance).

The remainder of the paper is organized as follows. In the next section, the real case

study of cylindrical surfaces is presented. Then, the approach for multilinear truncation and

best approximation for dimensionality reduction, which follows the classical PCA paradigm,

are briefly introduced. Application of the MPCA to the reference case study is discussed in

the subsequent section. Conclusions and final remarks will be provided in the last section.
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Data collection

The case study consists of a set of 90 samples, where each sample is a bar of titanium alloy

Ti-6Al-4V supplied in 20 mm diameter and machined using a lathe-turning process to a

final diameter of 16.8 mm by implementing two cutting steps. With reference to the second

cutting step (finishing operation), three levels of two process parameters (the cutting speed

and the depth of cut) were considered, according to a 32 full design. Table (1) shows the 9

treatments of the experiment, where each treatment was randomly replicated 10 times. Each

Treatment # Sample # depth (mm) speed (m/min)

1 1-10 0.4 80

2 11-20 0.4 70

3 21-30 0.4 65

4 31-40 0.8 80

5 41-50 0.8 70

6 51-60 0.8 65

7 61-70 1.2 80

8 71-80 1.2 70

9 81-90 1.2 65

Table 1: Cutting parameters for 9 experimental conditions.

surface was measured by a Coordinate Measuring Machine - CMM (Dowling et al., 1997)

on a given cylindrical grid of P ⇥ Q equally spaced positions: P measurements along the

vertical direction and Q along the angular direction. The CMM touch trigger approached

the nominal position of each grid point, and then stored the coordinates of the probe when it

touched the surface. The measurements were taken in 42 mm along the bar length and a set

of 210⇥64 radii was available for each item. Surface data were computed as deviations of the

measured radii from the substitute geometry: i.e., the ideal cylinder. For each surface, the

substitute geometry was computed by minimizing the sum-of-squared distances between the

observed radii and the ideal feature. Hence, the final set of data consists of radial deviations

(either positive or negative) from a perfect cylinder, measured at each position of the fixed

grid. A registration procedure was also implemented on the surface data set, as required in

industrial engineering when dealing with form tolerances (Colosimo and Pacella, 2011).
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An introduction to multilinear PCA

PCA is a low-rank decomposition approach for feature extraction and analysis of one-

dimensional arrays of data. In practice, the objective of PCA is to reduce the dimensionality

of a large number of interrelated variables of the array by linearly transforming them to a

new set of variables, called principal components (PCs), which are uncorrelated and ordered

so that the first few retain most of the original data variation (Jolli↵e, 2002).

Application of PCA to tensor data could be implemented (Henke et al., 1999; Summer-

hays et al., 2002) by reshaping tensors into one-dimensional arrays with a large number

of variables. One issue in implementing this approach is that it breaks the structure and

correlation in the original data, removing higher order dependencies present in the data set

and losing potentially more compact or useful representations that can be obtained in the

original form. Recently, the Multilinear Principal Component Analysis (MPCA) formulation

for tensor feature extraction was proposed in the literature (Lu et al., 2008). This method

operates directly on tensor data. The objective of MPCA is to perform linear transforma-

tions in all tensor modes seeking those bases in each mode that allow projected tensors to

capture most of the variation present in the original data set.

In the remainder of this section first some basic concepts of multilinear algebra are intro-

duced and then the MPCA method is presented with reference to the case study considered

in this paper. For a more general discussion, the reader is referred to the original references

(Lathauwer et al., 2000a; Lathauwer et al., 2000b; Lathauwer and Vandewalle, 2004).

Basic notation

The following convention is adopted herein: 1-order tensors (vectors) are denoted by lower-

case boldface letters (a), 2-order tensors (matrices) by upper-case boldface (A) and 3rd-

order tensors by calligraphic letters (A). Their elements are denoted with indexes in brack-

ets, where the indexes are denoted by lower-case letters and span the range from 1 to the

upper-case letter index (a(p), A(p, q), A(p, q, n) where p = 1, . . . , P , q = 1, . . . , Q and

n = 1, . . . , N).

Let (z, ✓) denote the location at which the actual radius is measured, where z and ✓

are the vertical and angular coordinates associated with the sampled point. The same

sampling strategy is assumed for all the surfaces, defining an ideal grid of P ⇥ Q equally
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spaced locations. Angular and vertical locations are selected among fixed levels, i.e., z 2
[z1, . . . , zp, . . . , zP ] and ✓ 2 [✓1, . . . , ✓q, . . . , ✓Q]. Therefore, the coordinates (z, ✓) can be rep-

resented by the couple of indexes (p, q).

Let vn,(p,q) represent the di↵erence between the actual radius and the nominal radius

observed at location of indexes (p, q) on the n-th (n = 1, . . . , N) surface. Note that vn,(p,q)

represents the response variable of interest as a function of other location variables, similar

to what is usually done for representing 2.5D surfaces, where the deviation of the real surface

from its ideal pattern is commonly modeled as a function of the other two coordinates. The

matrix Vn 2 RP⇥Q, whose element of row p and column q is Vn(p, q) = vn,(p,q), represents

the surface data the n-th item.

A data set ofN cylindrical surfaces is stored in a 3rd-order tensor denoted as V 2 RP⇥Q⇥N

and is addressed by 3 indexes, p, q and n related to the so-called 1-mode, 2-mode and 3-mode

of V . By definition, the j-mode vectors (j = 1, 2, 3) of V are defined as the vectors obtained

from by varying the j-th index while keeping all the others fixed. Unfolding the tensor V
along the 1-mode (2-mode or 3-mode) is denoted by V(1) 2 RP⇥(Q·N) (V(2) 2 RQ⇥(N ·P ) or

V(3) 2 RN⇥(P ·Q)) and represents the matrix whose column vectors are the 1-mode (2-mode

or 3-mode) vectors of V .

SVD with tensor notation

Consider a data set of N one-dimensional arrays of P variables, where the data set is sum-

marized in a matrix V 2 RP⇥N (the rows represent the variables and the columns are the

samples). Let Vc represent the centered data matrix obtained from V by subtracting the

mean data samples from each sample. The covariance matrix of V is ⌃̂ = 1

N�1
VcVcT , and

is obtained re-scaling by a constant 1/(N � 1) the scatter matrix of Vc defined as VcVcT .

The Singular Value Decomposition (SVD) of Vc is as follows.

Vc = USZT = U(1)SU(2)
T
= S⇥1 U

(1) ⇥2 U
(2). (1)

U 2 RP⇥P is a unitary matrix (i.e., it has columns which form an orthonormal basis of

RP ), whose columns are the eigenvectors of the scatter matrix VcVcT (and of ⌃̂). These

eigenvectors are called the left singular vectors of Vc. S 2 RP⇥N is pseudodiagonal and

contains the singular values of Vc. Without loss of generality, the elements in S are assumed

arranged in a decreasing order (columns of U and Z are correspondingly arranged). Z 2
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RN⇥N is a unitary matrix, whose columns are the eigenvectors of the scatter matrix VcTVc,

also called the right singular vectors of Vc.

Tensor notation on the right-hand in Equation (1) is as follows. The j-mode product

(j = 1, 2) of matrix S 2 RP⇥N by matrices U(1) 2 RP⇥P and U(2) 2 RN⇥N , is denoted by

S⇥j U(j) and results in a matrix with entries (S⇥1 U(1))(j1, i2) =
PP

i1=1
S(i1, i2)U(1)(j1, i1)

and (S⇥2U(2))(i1, j2) =
PN

i2=1
S(i1, i2)U(2)(j2, i2). As the columns of matrix U = U(1) form

a unitary basis for the space RP , the coordinates in this new basis for the data set stored in

Vc are UTVc = SZT , i.e., Vc ⇥1 U(1)
T
= S⇥2 U(2).

The aim of PCA is to solve the problem of approximating the data matrixVc with another

matrix eVc which has a lower rank (rank(eVc) < rank (Vc) - a low-rank representation of

data), where the approximation objective is to minimize the distance between Vc and eVc:

min
eVc

(kVc � eVckF ) subject to rank
⇣
eVc
⌘
 P 0. (2)

k · kF denotes the Frobenius norm, which is by definition the squared root of the sum of

each squared entry of its argument. P 0 is a given upper bound for the rank of matrix eVc

(P 0 < P ). By the SVD in Equation (1), matrix eVc can be obtained as eVc = eS⇥1U(1)⇥2U(2)

where eS is the same matrix as S except that it contains only the P 0 largest singular values

(the other singular values are replaced by zero). Hence, denoting by eU(1) the matrix formed

by the first P 0 columns of U(1), which correspond to the first P 0 larger singular values of

Vc, a data sample vector of P points vn (n = 1, . . . , N) is projected to a feature space

as eU(1)
T
(vn � v) = (vn � v) ⇥1

eU(1)
T
. This is a set of P 0 coordinates which represent the

so-called scores (PC-features) of vector vn in the subspace eU(1).

HOSVD as a generalization of SVD

In the targeted application the data set is summarized in a 3rd-order tensor with real entries.

Let V 2 RP⇥Q⇥N represent the tensor of data, and Vc the centered data tensor obtained from

V by subtracting the mean V = 1

N

PN
n=1

Vn from each sample Vn (n = 1, . . . , N). Tensor

Vc is decomposed using the generalization of the SVD in Equation (1) called Higher Order

Single Value Decomposition (HOSVD) in multilinear algebra (Lathauwer et al., 2000a). In

particular, the centered 3rd-order tensor Vc can be decomposed as follows.

Vc = S ⇥1 U
(1) ⇥2 U

(2) ⇥3 U
(3), (3)
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where S 2 RP⇥Q⇥N , U(1) 2 RP⇥P , U(2) 2 RQ⇥Q and U(3) 2 RN⇥N . The j-mode product

(j = 1, 2, 3) of the tensor S by matrix U(j) is denoted as S ⇥j U(j) and results in a ten-

sor with entries (S ⇥1 U(1))(j1, i2, i3) =
PP

i1=1
S(i1, i2, i3)U(1)(j1, i1), (S ⇥2 U(2))(i1, j2, i3) =

PQ
i2=1

S(i1, i2, i3)U(2)(j2, i2), and (S⇥3U(3))(i1, i2, j3) =
PN

i3=1
S(i1, i2, i3)U(3)(j3, i3) respec-

tively.

S is called the core tensor for the HOSVD of Vc. It is a 3rd-order tensor that contains the

so-called 1-mode, 2-mode and 3-mode singular values of Vc. U(1) =
⇣
u(1)

1
· · ·u(1)

p · · ·u(1)

P

⌘
,

U(2) =
⇣
u(2)

1
· · ·u(2)

q · · ·u(2)

Q

⌘
and U(3) =

⇣
u(3)

1
· · ·u(3)

n · · ·u(3)

N

⌘
in Equation (3) are unitary

matrices in RP⇥P , RQ⇥Q and RN⇥N respectively.

Considering the columns of matrices U(1), U(2) and U(3), the HOSVD of Equation (3)

can be also rewritten as follows.

Vc =
PX

p=1

QX

q=1

NX

n=1

S(p, q, n) ·
�
u(1)

p � u(2)

q � u(3)

n

�
, (4)

where u(1)

p � u(2)

q � u(3)

n denotes the outer product of vectors u(1)

p , u(2)

q and u(3)

n and results in

a 3rd-order tensor in which the generic element of indexes i1, i2, i3 is obtained as u(1)

p (i1) ·
u(2)

q (i2) · u(3)

n (i3) for all values of indexes i1,i2 and i3.

A way to compute the HOSVD of the tensor Vc is through the common SVD procedure

on the results of matrix unfolding (i.e., the SVD of matrices Vc
(1)
, Vc

(2)
and Vc

(3)
in order

to obtain matrices U(1), U(2) and U(3) respectively). Then, the core tensor can be obtained

from Equation (3) as S = Vc ⇥1 U(1)
T ⇥2 U(2)

T ⇥3 U(3)
T
.

This HOSVD solution, which extends SVD to higher order tensors through the calcu-

lation of di↵erent matrix SVDs of unfolded matrices, was first formulated in (Lathauwer

et al., 2000a). In our study, the Higher-order orthogonal iteration algorithm proposed in

(Lathauwer et al., 2000b) and based on the MATLAB implementation described in (Kolda,

2001; Bader and Kolda, 2006) is exploited for computing HOSVD.

By using the HOSVD theoretical results and algorithms presented in (Lathauwer et al.,

2000b), approaches for multilinear truncation and best approximation for dimensionality

reduction, which follows the classical PCA paradigm, were recently proposed in the litera-

ture. MPCA, introduced by (Lu et al., 2008), is one of the multilinear dimension reduction

techniques applicable to tensor data. The MPCA algorithm is summarized in the following

subsection.
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Multilinear Principal Component Analysis (MPCA)

The simplest method to implement dimensionality reduction in the multilinear case is based

on truncation of the unitary matrices in Equation (3), analogously to the truncation of

unitary matrices in PCA.

The HOSVD of Vc can be truncated by keeping P 0  P orthonormal columns for the

unitary matrix U(1) in the 1-mode and, simultaneously, Q0  Q orthonormal columns for

the unitary matrix U(2) in the 2-mode, such that the projected tensor captures the most of

variation observed in the original tensor.

Through the two matrices eU(1) and eU(2) (eU(1) 2 RP⇥P 0
and eU(2) 2 RQ⇥Q0

) a basis of

P 0 · Q0 tensors for the space RP⇥Q can be derived. Each tensor of the basis is computed as

the outer product (u(1)

p � u(2)

q ), where u(1)

p is the column of index p (p = 1, . . . , P 0) of eU(1),

u(2)

q is the column of index q (q = 1, . . . , Q0) of eU(2) (note that, in our case, the tensors of

the basis are 2nd-order tensors, i.e., matrices). These basis tensors are called eigentensors

in the literature (Lu et al., 2008). Thus, a centered data samples (Vn �V) (n = 1, . . . , N),

is projected to a lower-dimension feature matrix as follows.

eYn = (Vn �V)⇥1
eU(1)

T ⇥2
eU(2)

T
, (5)

where eYn 2 RP 0⇥Q0
(n = 1, . . . , N) is the the projected matrix that, in analogy with common

PCA, can be referred to as the matrix of scores.

Similarly to the optimization problem in Equation (2) for the case of regular PCA,

the problem can be formulated in terms of an approximation of tensor Vc with another

tensor eVc, where the objective is to minimize the norm of the distance between them. In

particular, assuming that the targeted dimensionality (P 0 and Q0) is specified in advance,

the optimization problem can be formulated as follows (where eVc
(1)

and eVc
(2)

are the result

of matrix unfolding of eVc).

min
eVc

(kVc � eVckF ) subject to rank
⇣
eVc

(1)

⌘
 P 0, rank

⇣
eVc

(2)

⌘
 Q0, (6)

Di↵erently from the optimization problem in Equation (2), the optimal solution for Equa-

tion (6) is not univocally given by a truncation of matrices U(1) and U(2). In fact, S is a

full tensor, instead of being pseudodiagonal as S in Equation (1). In the MPCA method,

introduced by (Lu et al., 2008), for finding the projection matrices eU(1) and eU(2), an iterative

algorithm was proposed in order to solve the optimization problem of Equation (6). The
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objective of the iterative algorithm is to define a multilinear transformation that maps the

original data set into a new data set, which captures most of the variations observed in the

original data, assuming that these variations are measured by the total tensor scatter.

In particular, denoting by  =
PN

n=1
k(Vn �V)⇥1

eU(1)
T ⇥2

eU(2)
T k2F the total scatter of

all projected samples, and assuming that the dimensionality for each mode (P 0 and Q0) is

known or predetermined, the objective of the MPCA iterative algorithm is the determination

of the two projection matrices eU(1) and eU(2) that maximizes:

max
eU(1),eU(2)

 
NX

n=1

k(Vn �V)⇥1
eU(1)

T ⇥2
eU(2)

T k2F

!
, (7)

subject to rank
⇣
eU(1)

⌘
 P 0, rank

⇣
eU(2)

⌘
 Q0.

By Equation (5), the total scatter  can be rewritten as  =
PN

n=1
keYnk2F . By defining

eyp0,q0 =
PN

n=1

⇣
eYn(p0, q0)

⌘2
the portion of total scatter explained by the projection on the

eigentensor of index p0 and q0 in the first and second mode respectively (p0  P 0, q0  Q0), we

have  =
P

p0
P

q0 eyp0,q0 . The ratio  /kVck2F is the percentage measure of the total scatter in

the original data set which is projected to the feature space of multilinear PCs.

When the targeted (reduced) dimensionality in each mode (P 0, Q0) is not specified in

advance, its value has to be determined. An approximate approach for dimensionality re-

duction consists of truncating the 1-mode and 2-mode eigenvectors such that the retained

portion of the total scatter in the 1-mode and 2-mode is about equal to a given value. This

approach, which is an extension of the dimensionality reduction strategy of the regular PCA

to the multilinear case, allows retaining a reduced number of features such that a given

percentage of the overall variability is captured in each mode. However, in the multilinear

case the dimensionality reduction in one mode cannot be determined independently from the

other, since eigenvalues in other modes are a↵ected by the eigenvector truncation in a given

mode (Theorem 2 in (Lu et al., 2008)). A di↵erent approach for dimensionality reduction

was proposed in (Lu et al., 2008): it is based on an iterative procedure called Sequential Mode

Truncation (SMT), which takes into account this e↵ect. The SMT procedure allows solving

the dimensionality reduction problem by an iterative truncation of both the 1-mode and

2-mode eigenvectors. Hereafter, the STM procedure will be considered for dimensionality

reduction in MPCA.

Di↵erently from regular PCA, the extracted features by MPCA may be correlated. For

this reason, other multilinear low-rank reduction techniques applicable to tensor data were
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also considered in the literature (Paynabar et al., 2013; Yan et al., 2015; Paynabar et al.,

2015). In particular, (Lu et al., 2009) proposed an extension of the MPCA named uncor-

related multilinear PCA (UMPCA), which introduces the zero-correlation constraint among

features (eigentensors) derived from an iterative procedure aimed at finding directions cap-

turing maximum variance. However, the zero-correlation constraints introduces a limitation

on the maximum number of eigentensors that may be extracted, whereas the remaining

portion of data variability may be captured by removing the zero-correlation constraint. In

the frame of statistical process monitoring, the existence of correlation among the extracted

features does not a↵ect the performances, since the information content is summarized by

the Hotelling’s T 2 statistics. Because of this, the MPCA approach is adopted in our study

instead of UMPCA.

Application to the real case study

The experimental study concerns a turning process which produced cylindrical surfaces with

diameter 16.8 mm and length 42 mm. A set of 90 cylinders were considered according to the

32 full design reported in table (1). Machined surfaces were sampled using the same regular

grid of points equally spaced (210⇥ 64 points).

For each surface, the deviations of the actual shape from the reference cylinder were

computed. The resulting data set was summarized in a 3rd-order tensor denoted as V 2
R210⇥64⇥90, where each entry V(p, q, n) represents the deviation of the actual surface from

the reference cylinder at the point with vertical coordinate of index p, angular coordinate

of index q, for item of index n (p = 1, . . . , 210, q = 1, . . . , 64 and n = 1, . . . , 90). Matrices

Vn 2 R210⇥64 represent the surfaces.

As first step of the analysis the average surface deviations from the reference cylinders

is computed (V = 1

90

P
90

n=1
Vn). Figure (1) plots the colored parametric surface V in a

3D diagram. In order to visually emphasize the surface deviations, these were plotted in a

scale 250:1, superimposed on the nominal cylinder of the case study (an ideal cylinder of

diameter 16.8 mm and length 42 mm). By a visual inspection of Figure (1), it appears that

a systematic shape is characterizing the process ”on-average”. The mean deviation increases

as the vertical coordinate increases resulting in a conical shape for the mean surface.
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Figure 1: Mean surface based on 90 replicates plotted on a 3D colored parametric diagram (darker

color refers to a minor deviation, a brighter color to a major deviation). Scale 250:1

Application of MPCA

Let Vc 2 R210⇥64⇥90 represent the centered data tensor obtained from V by subtracting the

mean surface V from each of the 90 samples.

Firslty, the MPCA algorithm was implemented in order to solve the optimization prob-

lem in Equation (7). Subsequently, the iterative SMT procedure (Lu et al., 2008) was

implemented to solve the dimensionality reduction problem. Given the results of the SMT

procedure, a natural criterion in selecting eigentensors to be included in the projection ba-

sis consists in sorting them by the portion of total scatter explained by each one, namely,

eyp0,q0 =
PN

n=1

⇣
eYn(p0, q0)

⌘2
, and then selecting the m most significant ones in order to obtain

a given percentage measure of the total scatter in the original data set.

In particular, the sequence of 8 most significant eigentensors obtained on the data set

of the reference case study are referred to as follows: 1/1, 1/2, 2/2, 2/1, 1/3, 3/5, 1/4 and

1/6 where each label is formed as p0/q0 (p0 is the index of the eigenvector in 1-mode, and

q0 is the index of the eigenvector in 2-mode). The portion of total scatter explained by

12



each one is as follows: ey1,1 = 0.5911(22.15%), ey1,2 = 0.3928(14.72%), ey2,2 = 0.2341(8.77%),

ey2,1 = 0.2323(8.70%), ey1,3 = 0.0711(2.66%), ey3,5 = 0.0534(2.00%), ey1,4 = 0.0405(1.52%) and

ey1,6 = 0.0342(1.21%) where in brackets are reported the percentage portion in the total

scatter of original data. Therefore, the total scatter of all projected samples on the first 8

most significant eigentensors is equal to  = 1.6476, which represents 61.73% of the total

scatter in the original data set.

The shape of retained eigenvectors is commonly interpreted by means of a graphical

representation. In the reference case study, each eigenvector in each mode can be plotted

as a function of a location in the space. Figure (2) reports the diagrams of the first four

1-mode eigenvectors (vectors u(1)

p in Equation (4) where p0 = 1, . . . , 4) as a function of

the vertical coordinate index. Similar diagrams are depicted in Figure (3), with reference

to the first six 2-mode eigenvectors (vectors u(2)

q in Equation (4) where q0 = 1, . . . , 6), in

which each eigenvector is depicted as a function of the angular coordinate index. From

Figure (2) it can be observed that one important component of variability in the 1-mode

is characterized by an increasing trend along the vertical direction. On the other hand,

important components of variability in the 2-mode (i.e., along the angular coordinate) are

periodic functions characterized by a frequency of 2 and 3 undulations per revolution (u.p.r.),

where the bi-lobed shape (2 u.p.r.) explains the most important portion of variability in 2-

mode. In particular, sinusoidal functions represent bi-lobed and three-lobed patterns, which

can be observed along the angular direction, while (near) linear and quadratic patterns are

observed along the vertical direction. These results are consistent to those observed in the

literature for cylindrical surfaces obtained by manufacturing processes (Henke et al., 1999).

By considering the eigenvectors in 1-mode and 2-mode respectively, a basis of eigen-

tensors, for the space R210⇥64, can be computed. Each eigentensor is formed by the outer

product (u(1)

p � u(2)

q ), where u(1)

p are the retained eigenvectors in 1-mode and u(2)

q are the re-

tained eigenvectors in 2-mode. These eigentensors form a basis on which a centered surface

(in R210⇥64) can be projected.

The 8 most significant eigentensors, which form a basis for the reference case study, are

graphically depicted in Figure (4) in a 3D cylindrical coordinate system, where each label is

formed as p0/q0 (p0 = 1, 2, 3 is the index of the eigenvector in 1-mode, and q0 = 1, 2, 3, 4, 5, 6

is the index of the eigenvector in 2-mode). Form Figure (4) it can be observed that each

eigentensor combines the shape of two specific eigenvectors, one in 1-mode and the other in

13



Figure 2: Plots of the first 4 eigenvectors related to 1-mode as a function of the vertical coordinate

index p = 1, . . . , 210

2-mode. As for instance, the most important eigentensor, obtained by combining the first

eigenvector in 1-mode to the first eigenvector in 2-mode (labelled with 1/1 in Figure (4)) is

a conical surface whose superior portion assume a bi-lobed contour. The conical shape along

the vertical coordinate is due to the eigenvector in the 1-mode, while the bi-lobed shape

along the angular coordinate to the eigenvector in the 2-mode. This result is similar to that

reported in the literature where a conical shape along the vertical (referred to as ”taper”

error) was defined as ”a dominant” form error of manufactured cylindrical surfaces (Henke

et al., 1999; Summerhays et al., 2002).

The values of the 8 scores for each surface in the data set, obtained by projecting the

centered surface on the eigentensors depicted in Figure (4), are plotted in the diagrams of

Figure (5). Each panel in Figure (5) is related to a specific eigentensor/score (the same

labeling convention of Figure (4) is adopted for Figure (5)). The 90 scores in each panel are

depicted in a series plot where the abscissa is the index n = 1, . . . , 90. By a rough inspection

of Figure (5) it appears that scores can be influenced by the specific experimental condition.
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Figure 3: Plots of the first 6 eigenvectors related to 2-mode as a function of the angular coordinate

index q = 1, . . . , 64

Statistical monitoring procedure

A statistical monitoring procedure can be implemented by integrating the results of the

MPCA with control charting. After defining all the features for each surface in the data set,

any multivariate control charts including T 2 Hotelling control chart, Multivariate Cumulative

Sum (MCUSUM), Multivariate Exponentially Weighted Moving Average (MEWMA), etc.,

can be used to monitor the vector of scores obtained by the MPCA. In this paper, we used

the T 2 Hotelling control chart for monitoring the vector of 8 scores related to the features

15



Figure 4: 8 eigentensors for the reference case study. Each label is formed as p0/q0 (p0 is the index

of the eigenvector in 1-mode, and q0 is the index of the eigenvector in 2-mode)
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Figure 5: Scores versus sample index n = 1, . . . , 90. Each panel depicts the scores obtained by

projecting the (centered) cylindrical surfaces on the eigentensor of label p0/q0 (p0 is the index of the

eigenvector in 1-mode, and q0 is the index of the eigenvector in 2-mode)
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depicted in Figure (4). In order to implement the control chart, i.e. to estimate the ”in-

control” process parameters (mean vector and covariance matrix to be used in computing the

Hotelling’s T 2 statistics), a subset of the 90 score vectors available was used. In particular,

we used the first 30 samples in the data set for estimating in-control process parameters,

while the remaining 60 was used to check whether the process parameters have changed,

i.e. if any ”assignable cause” a↵ected the process. As a matter of fact, the first 30 samples

are obtained from the lathe-turning process using a depth of cut equal to 0.4mm, while the

remaining subset of samples from the turning process using a greater depth of cut (0.8mm

and 1.2mm).

Assessing the assumption of multivariate normality is required in order to define a given

Type-I error control limit for the T 2 Hotelling control chart. Many statistical tests and

graphical approaches are available to check the multivariate normality assumption. Among

these, the Mardia’s multivariate skewness and kurtosis statistics (Mardia, 1970) are com-

monly adopted. In our study the Mardia’s multivariate skewness and kurtosis coe�cients as

well as their corresponding statistical significance were calculated on the set of 30 in-control

scores computed by MPCA. Both the skewness and kurtosis estimates indicated multivariate

normality. Therefore, according to Mardia’s test, the data set of MPCA scores for the first

30 samples of the case study follows a multivariate normal distribution.

Starting from the set of scores computed by MPCA, the 99.73% upper control limit (UCL)

for the T 2 Hotelling control chart resulted equal to UCL = 23.75, which is the percentile of

the asymptotic distribution: a chi-square with degrees of freedom equal the of dimension of

vectors observed over time. The control limit and the T 2 Hotelling statistics are depicted

in Figure (6). With reference to the 90 vectors of 8 scores for each surface in the data set,

obtained by projecting the centered surface on the eigentensors depicted in Figure (4), the

T 2 Hotelling control chart is plotted in Figure (6). From Figure (6), it can be noted that the

control chart triggers a total of 20 out-of-control signals for the data set of surfaces obtained

by using a cut depth equal to 0.8mm (samples from 31 to 60) and a signal for each sample

in the case of depth equal to 1.2mm (samples from 61 to 90).

Even limited to the data set in the specific case study of this paper, the T 2 Hotelling

control chart in Figure (6) shows that integrating MPCA with multivariate control charting

can be worth for implementing an e↵ective statistical process control method when the

quality characteristic of interest is a 2.5D surface.

18



One alternative approach to deal with multi-way arrays involves unfolding the multi-

dimensional data into vectors in order to apply the regular PCA on the transformed data

(Vectorized PCA - VPCA). VPCA is a generalization of PCA to tensor data, which applies

the regular PCA to a tensor object reshaped into a vector. The VPCA is the multi-way

PCA approach originally proposed in (Nomikos and MacGregor, 1995) for monitoirng batch

processes. Although the eigenvectors obtained from VPCA are not as informative as the

eigentensors of MPCA, the control chart approach based on the regular PCA (Colosimo and

Pacella, 2007) may be applied to the vectorized data. The control chart considered herein is

based on the Hotelling’s T 2 statistics, used to detect possible deviations along the directions

of the first m PCs. In our study, in order to compare the VPCA-based control chart to the

MPCA one, we decided to retain a number of m = 8 PCs, i.e. the same number of retained

features in the MPCA.

The 99.73% UCL and the T 2 Hotelling statistics of the VPCA-based approach are de-

picted in Figure (7). In this case, the control chart triggers a total of 24 out-of-controls for

set of surfaces obtained by using a cut depth equal to 0.8mm (samples from 31 to 60) and

a signal for each sample in the case of depth equal to 1.2mm (samples from 61 to 90). It is

worth noting that by retaining of m = 8 PCs a percentage of about 70% of the variability in

the original data set is explained by VPCA, while by using the MPCA the first 8 most sig-

nificant eigentensors allow to retain a lesser percentage of variability (61.73%). As a matter

of fact, in order to retain a 70% percentage of variability in the data by using MPCA, the

number of most significant eigentensors required resulted equal to 22. The observed result

implies that VPCA may be more parsimonious than MPCA in terms of the number of fea-

tures required to capture the majority of variations. This is because, di↵erently from regular

PCA, the extracted features by MPCA may be correlated. Despite of this, with reference

to the 90 vectors of 22 scores for each surface in the data set, obtained by projecting each

centered surface on the 22 most significant eigentensors obtained from the MPCA, the T 2

Hotelling control chart outperforms the VPCA one. In this case, the 99.73% control limit

(equal to UCL = 44.90) and the T 2 Hotelling statistics are depicted in Figure (8). It can

be observed that a signal is triggered for each out-of-control sample both in the case of a

cut depth equal to 0.8mm (samples from 31 to 60) and in the case of depth equal to 1.2mm

(samples from 61 to 90).
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Figure 6: MPCA-based T 2 Hotelling control chart of scores obtained by projecting the (centered)

cylindrical surfaces on the 8 most significant eigentensors (61.73% of explained variability). 99.73%

UCL, in-control samples n = 1 . . . 30, out-of-control samples n = 31 . . . 90. Semi-log graph

Conclusions

2.5D surface data are being increasingly considered as quality characteristic of interest for

manufacturing processes. One of the main challenges in monitoring this type of data for sta-

tistical process control is related to the high-dimensionality and complex spatial correlation

structure of such data. Thus, e↵ective dimension reduction and low-rank representation of

these data is essential for better process monitoring.

Recent literature has shown that PCA can be implemented for detecting the systematic

ways in which manufactured profiles vary around the mean profile. In this paper, it was

shown that a generalization of PCA, namely the MPCA, can be used for interpreting and

modeling manufactured 2.5D surfaces. The MPCA model can be e↵ectively used to represent

surface patterns. As any PCA-based methods the main advantage is its ease of use because

no cumbersome activity of regressor selection is required.

A case study related to surfaces of mechanical components obtained by a real lathe-
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Figure 7: VPCA-based T 2 Hotelling control chart of scores for the 8 most significant PCs (70%

of explained variability). 99.73% UCL, in-control samples n = 1 . . . 30, out-of-control samples

n = 31 . . . 90. Semi-log graph

turning process was used as reference. The data set of di↵erent cylindrical surfaces was

summarized in a tensor object. The MPCA results in a multilinear projection that projects

the original tensor objects into a lower-dimensional tensor subspace while preserving the

variation in the original data. A basis formed by eigentensors was identified to model the

cylindrical surfaces in the reference case study. Plot in a 3D space of the eigenvecotrs in

the basis provide some interesting information on the sources of variability behind collected

data. The plot on a Cartesian diagram of the projection coe�cients (scores) associated to the

eigentensors in the basis allows one to gain more insight on the relationship between process

parameters and the shape of obtained surfaces. Finally, a statistical monitoring procedure

can be implemented by integrating the results of the iterative MPCA with control charting.

In particular, any multivariate control charts can be used to monitor the vector of scores

obtained by the MPCA.

By comparing the MPCA to regular PCA, e.g. the VPCA consisting of applying PCA to

vectors generated by unfolding the original multi-way data-set, the MPCA could be a more
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Figure 8: MPCA-based T 2 Hotelling control chart of scores obtained by projecting the (centered)

cylindrical surfaces on the 22 most significant eigentensors (70% of explained variability). 99.73%

UCL, in-control samples n = 1 . . . 30, out-of-control samples n = 31 . . . 90. Semi-log graph

e�cient method from a computational and memory saving point of view, especially when

high numbers of data points are involved or in the presence of more complex data structures,

as for example in case of Red, Green, and Blue (RGB)-color images. Furthermore, analysis of

out-of-controls released during statistical process monitoring may also benefit of the MPCA

method, since MPCA may lead to easier interpretation of retained features than VPCA.

As a matter of fact, the eigenvectors obtained from the VPCA are not as informative as

the eigentensors of MPCA. Further research and simulation e↵orts are needed to further

clarify the benefits and limitations of the proposed approach in di↵erent scenarios of surface

monitoring.

As a summary, the topic of surface monitoring via the multilinear dimension reduction

techniques applicable to tensor data, such is MPCA, appeared to be a promising field of

research for the future. Considering that the approach proposed in this paper is quite general,

one direction of future research consists in a revision and extension of the proposed method

that could be tested and compared with existing procedures to detect changes in the pattern
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of manufactured surfaces. Furthermore, as fault diagnosis and root-cause identification is an

important task after a change is detected, development of a fault diagnosis methods that can

be integrated with the process monitoring is an important, yet challenging research topic

that deserves further study.
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