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Abstract 10 

The complexity of collection systems for Waste from Electric and Electronic Equipment (WEEE) 11 

in the EU is increasing, due to the latest directive that sets new collection targets and modes. The 12 

high variability and the uncertainty of reverse flows require innovative logistic approaches. One 13 

recent option for increasing efficiency and responsiveness in waste collection services, boosted by 14 

new technological solutions for waste level monitoring, is to adopt a dynamic collection scheme, 15 

where the collection frequency is not established a priori (based on a fixed plan), but it is based on 16 

the actual filling levels of waste bins. This option can allow the service provider to plan the 17 

collection service following the actual demand, resulting in a more responsive service, while 18 

improving the logistic efficiency. This paper evaluates the implementation of dynamic scheduling 19 

schemes for the collection of WEEE. A hybrid simulation model has been developed in order to 20 

support researchers and practitioners in assessing quantitative impacts of adopting dynamic 21 

scheduling in WEEE collection. Three logistic alternatives (a fixed collection schedule scheme, a 22 

pure dynamic scheme and a mixed one) have been compared in a test case based on data of an 23 

Italian municipality; collection services for different types of WEEE (i.e. large appliances and 24 

small items) have been analyzed. Results show a promising performance of dynamic schedules 25 

compared to the fixed one, revealing, for the specific test case, how a mixed solution can combine 26 

the advantages of dynamic and fixed scheduling, gaining flexibility towards customer demand 27 

while improving truck resource utilization.  28 

Keywords: e-waste collection; dynamic scheduling; simulation modelling; Pay-as-you-throw 29 

(PAYT). 30 



1. Introduction 31 

Waste from Electric and Electronic Equipment (WEEE) is one of the most critical waste flows 32 

worldwide. On one side, it is one of the fastest growing flows, since the volume of WEEE 33 

generated increases by a rate of 3-5% per year (Cucchiella et al., 2015). On the other side, products 34 

in the end-of-life stage contain precious materials that could be recovered, as well as hazardous 35 

substances that need to be treated and disposed properly (Mihai and Gnoni, 2016; Oliveira et al., 36 

2012; Ongondo et al., 2011). Despite the Basel Convention treaty, the US and many European 37 

countries are exporting part of their WEEE to developing countries (mainly in Southeastern Asia 38 

and Africa), contributing to resource depletion and material loss for the exporter countries, while 39 

causing uncontrolled pollution and health issues related to a lack of waste valorization (Ongondo 40 

et al., 2011; Tansel, 2017). Recently, the European Union established new collection targets for 41 

the member States, passing from a fixed target (i.e. 4kg per inhabitant) (Directive 2002/96/EC) to 42 

a floating one proportional to the average quantity of EEE sold in the (three) previous years 43 

(Directive 2012/19/EU). This legislative change is forcing a strong increase in WEEE collection 44 

rate, which mainly depends on service efficiency. The adoption of new logistics models is essential 45 

to overcome some of the main criticalities related to WEEE collection. One recent solution, studied 46 

in some prototypal cases, is to transform the traditional (static) service approach into a Product-47 

Service-System (PSS), where the service component (waste collection) is improved by a product 48 

component, i.e. technological solutions for waste monitoring and data transmission. This new 49 

approach could enable more dynamic collection schemes, in order to face the emerging complexity 50 

related to the management of highly variable waste flows. Specifically, a dynamic scheduling of 51 

the service, based on the actual level of waste produced monitored through sensors collecting real-52 

time data, could be a valid alternative to the currently adopted fixed scheduling schemes, where 53 

the service is planned based on average demand forecast (Johansson, 2006). 54 



This work analyzes the implementation of dynamic collection schemes for WEEE, comparing 55 

them with traditional fixed ones through simulation modelling. A dynamic collection scheme 56 

organizes collection frequency based on the actual level of bins; on the contrary, current collection 57 

services are often based on a fixed collection frequency set by an a priori service plan. The aim is 58 

to evaluate the technical efficiency of these new logistic models in collecting waste compared to 59 

traditional ones. A hybrid simulation model has been developed with this purpose.  60 

The paper is structured as follows: a theoretical background is presented in Section 2. Section 3 61 

describes the peculiarities of WEEE collection, with particular focus in the Italian system. 62 

Materials and methods are presented in Section 4, while results are discussed in Section 5. Section 63 

6 summarizes the conclusions.  64 

2. Theoretical background 65 

2.1 Towards dynamic scheduling for waste collection 66 

Collection and transportation are critical steps in a solid waste management system, both from an 67 

economic and environmental perspective, as they account for a consistent part of the total 68 

management costs and imply an intensive use of vehicles (Boskovic et al., 2016; Król et al., 2016; 69 

Zsigraiova et al., 2013). Therefore, new solutions that aim at increasing the efficiency and the 70 

environmental performance of the collection process, like PSS, could affect positively the overall 71 

sustainability of the waste management system. PSS has been defined as “a system of products, 72 

services, supporting networks and infrastructure that is designed to be competitive, satisfy 73 

customer needs and have a lower environmental impact than traditional business models”. The 74 

adoption of PSS models in the public services sector is quite a recent approach: several benefits 75 

could be outlined starting from an increase in service efficiency to economic savings (Mont, 2002). 76 

Waste management represents an interesting public service where the adoption of PSS could make 77 

a relevant contribution, in particular in the collection phase. The implementation of PSS models 78 



in waste collection is mainly based on the diffusion of Internet of Things (IoT) in this sector. One 79 

example is the possibility provided by IoT devices to track the waste bin level, but also to identify 80 

the users of the waste collection service (Elia et al, 2015; Hannan et al., 2015). According to the 81 

type of waste flow and to local constraints and conditions, different technological solutions can be 82 

chosen: several prototypes for measuring the filling level of a bin and transmitting data to the 83 

service provider have been presented in literature, along with different solutions for the user 84 

identification (Anagnostopoulos et al., 2017). The massive diffusion of IoT technologies in the 85 

waste collection process will support more effective and efficient economic models, like the Pay-86 

As-You-Throw (PAYT) approach, as well as innovative logistics models, like dynamic scheduling, 87 

which are implicitly connected. The basic idea derives from the PSS paradigm: the process has to 88 

be designed based on the actual demand of the user. Therefore, PAYT aims at charging the user 89 

proportionally to the service received, depending on the type and the quantity of the waste provided 90 

to the waste service (Bilitewski, 2008). According to scientific literature, this approach results in 91 

several advantages for the user, the service provider and the society. On one side, it would improve 92 

the equity of the system, since the user would pay a fee proportional to the effective use of the 93 

service. This could also promote virtuous behavior, with environmental and economic benefits 94 

related to the increase of recycling rate; however, this outcome can change from case to case, since 95 

it is strictly dependent on the public perception of the PAYT system implemented (Dahlén and 96 

Lagerkvist, 2010). Dunne et al. (2008) analyze this issue and suggest some guidelines to improve 97 

acceptability. On the other side, an effective design of the system would allow the service provider 98 

to benefit from the economic advantages related (Reichenbach, 2008). 99 

Dynamic scheduling aims at organizing the collection frequency based on the actual filling level 100 

of the waste bin rather than on fixed dates, and it has recently become a topic of increasing interest 101 

for researchers and practitioners (Elia et al., 2015). Dynamic scheduling can extend the “Pay-As-102 

You-Throw” logic to a “Pay-As-You-Use” one by performing the collection only when required 103 

(Elia et al., 2016). Waste measurement in the different collection points, required in a PAYT 104 



system,  can be combined with real time data collection and update, allowing the service provider 105 

to know the actual state of the system, including data about which collection point is getting full 106 

and needs to be served first. This could heavily improve the overall collection efficiency, since the 107 

service adapts to the current demand, as opposed to traditional schemes with fixed scheduling 108 

based on forecasts usually estimated on average generation rates (Fig.1).  109 

The focus of this study is to evaluate the technical convenience of adopting dynamic scheduling 110 

in waste collection from a logistics point of view.  111 

 112 

[Insert Figure 1] 113 

Figure 1: Transition from a fixed to a dynamic waste collection service. 114 

2.2 Dynamic waste collection: a literature analysis 115 

A literature analysis was performed to outline the state of the art about dynamic collection services 116 

in waste management. Recent studies deal with the technological and organizational perspectives, 117 

analyzing design issues or describing case studies. Thürer et al. (2016) analyzed the adoption of 118 

an IoT system for waste collection as a Kanban-based system, thus based on actual demand (the 119 

so called pull system) rather than on forecasts (as in traditional push systems). The Kanban method 120 

is a card-based inventory-control system usually applied in just-in-time manufacturing to manage 121 

pull production (Sugimori et al., 1977). The authors describe analogies and differences between 122 

Kanban for manufacturing processes and for reverse logistics, with a focus on the waste services. 123 

Anagnostopoulos et al. (2017) proposed a taxonomy for classifying intelligent waste management 124 

systems and their components, and used it to perform a literature analysis on IoT-based 125 

applications for waste management. Hannan et al. (2011) proposed a system based on different 126 

IoT technologies (RFID, GPS, GPRS and GIS) that helps monitoring the status of each bin, 127 

allowing to collect updated historical data for optimizing collection services. Similarly, Sharmin 128 



and Al-Amin (2016) described a cloud-based system for waste collection able to gather data about 129 

the bin weight and optimize the routing based on actual filling level; no comparisons with other 130 

approaches was proposed. Finally, Lindström et al. (2017) analyzed a collection model based on 131 

IoT technologies for dynamic scheduling, focusing on the description of the main organizational 132 

impacts for the provider, as well as advantages for the customers.  133 

Other studies in the literature analyzed the implementation of dynamic scheduling focusing on the 134 

economic advantages and efficiency of these models, often compared to fixed ones. Johansson 135 

(2006) used analytical modeling and discrete events simulation (DES) to compare different 136 

scheduling and routing policies, based on real data from a Swedish solid waste management 137 

system with smart containers. Results showed the positive impact of adopting dynamic scheduling 138 

and routing for reducing operational cost in waste collection services in large areas; the benefit 139 

decreased for smaller contexts. Faccio et al. (2011) proposed an effective multi objective model 140 

integrated with traceability data, tested on an Italian municipality. Their analysis also included 141 

investment costs, demonstrating the economic feasibility of the system. Similarly, Anghinolfi et 142 

al. (2013) proposed a decision model for the dynamic optimization of materials collection in a 143 

waste management system, integrated with a GIS-based decision support tool; the model allowed 144 

an economic comparison between the fixed and dynamic services. Asimakopoulos et al. (2016) 145 

proposed a dynamic routing waste collection model, based on an IoT system that provides 146 

information about the fill level of the bins, showing through simulation how their solution 147 

outperforms the traditional fixed routing system. A similar system is presented by Borozdukhin et 148 

al. (2016), whose model also added data about traffic congestion to include time objectives in the 149 

routing problem. Another example of dynamic routing based on waste level monitoring is 150 

described by Mes et al. (2014): the authors discussed a case study in the Netherlands based on the 151 

adoption of a heuristic approach for the daily collection service planning, which was tested through 152 

a simulation model. Similarly, Gutierrez et al. (2015) discussed an IoT-based system allowing the 153 

waste collection firm to gather filling level data from the bins and to elaborate daily the most 154 



convenient route for collection. They compared this system with a fixed routing based on cluster 155 

zones and, unlike other studies, they reported that the higher collection efficiency obtained with 156 

the IoT system corresponds to higher total costs. This is also due to the estimation of high 157 

investment costs for the IoT infrastructure. Focusing on the technical performance, McLeod et al. 158 

(2014) applied a dynamic policy for the collection of charity assets from donation banks and retail 159 

shops, comparing its performance to the existing fixed scheduling scheme. The research showed 160 

that a minimum fill level between 50% and 75% allows time and distance savings up to 30%. 161 

Anagnostopoulos et al. (2015) discussed a dynamic waste collection model, which was applied 162 

only for high priority areas. Among several KPIs identified, the authors outlined a higher 163 

responsiveness of their solution (expressed as response time) compared to static models. Finally, 164 

Lelah et al. (2011) analyzed the environmental dimension of the problem applying life cycle 165 

assessment (LCA) to point out the main environmental impacts and benefits of dynamic 166 

scheduling in the glass collection service. A summary of the literature reviewed is shown in Table 167 

1. 168 

Table 1: Literature analysis about IoT for dynamic waste collection 169 

# Focus Adopted methodology Compare static 
and dynamic 
scheduling  

Anagnostopoulos et al., 
2017 

Technological Literature review No 

Hannan et al., 2011 Technological -- No 
Lindström et al., 2017 Organizational -- No 
Sharmin and Al-Amin, 
2016 

Efficiency -- No 

Thürer et al., 2016 Model architecture Conceptual study No 
Anagnostopoulos et al., 
2015 

Efficiency Simulation No 

Anghinolfi et al., 2013 Economic Dynamic modelling + GIS Yes 

Asimakopoulos et al., 
2016 

Economic Simulation Yes 

Borozdukhin et al., 2016 Economic + 
Efficiency 

Real case Yes 

Faccio et al., 2011 Efficiency Multi objective model Yes 

Gutierrez et al., 2015 Economic + 
Efficiency 

Simulation (GIS) Yes 

Johansson, 2006 Economic Analytical model + 
simulation (DES) 

Yes 

Lelah et al., 2011 Environmental LCA No 



McLeod et al., 2014 Economic + 
Efficiency 

Analytical model Yes 

Mes et al., 2014 Economic Simulation optimization 
(DES) 

Yes 

 170 

2.3 Discussion and scope of the work 171 

Some considerations can be derived from the literature analysis previously discussed. 172 

• The increasing diffusion of IoT technologies is a new issue in waste management: its main 173 

contribution could be to enable efficiently dynamic scheduling collection systems. Few recent 174 

studies have faced this topic, especially from a technological and organizational perspective; the 175 

evaluation of its feasibility from a logistics point of view compared to traditional models has not 176 

yet been fully analyzed. The focus of the works considered is often on the technological and 177 

organizational perspective; few papers analyze the economic performance and efficiency of the 178 

new logistics model, outlining potential benefits compared to traditional ones.  179 

• Analyzing the methodologies adopted in these studies, either analytical or simulation 180 

models are used to evaluate system performance from different points of view. Most of the studies 181 

outlined some benefits in costs or efficiency of the dynamic collection scheme compared to the 182 

fixed one. Only two studies (Gutierrez et al., 2015; Johansson, 2006) highlighted some criticalities, 183 

i.e. a cost increase, also due to the initial investments, and the influence of the demand variability 184 

and the size of collection area on the system efficiency. This suggests that further investigation is 185 

needed.  186 

• Most of the studies analyzed apply dynamic schemes to Municipal Solid Waste (MSW) 187 

collection. Only four papers considered more specific applications, like glass collection, high 188 

priority waste, charity assets and WEEE (Anagnostopoulos et al., 2015; Elia et al., 2016; McLeod 189 

et al., 2014; Lelah et al., 2011), despite the wide potential of waste collection “as-a-service” for 190 

commercial users (retailers, shops, etc.), not only for citizens. Evaluating the implementation of 191 

this model to other waste flows is still an unexplored issue. 192 



This work contributes by exploring the impact of dynamic scheduling applied to waste collection 193 

systems for commercial users in a MSW system, through simulation modelling, aligning with the 194 

latest research on the topic. Particularly, the aim is to explore the application of this model to waste 195 

flows different from MSW (i.e. collected from commercial users), and verify the efficiency and 196 

economic implications related to the transition from a fixed service (based on a constant collection 197 

frequency) to a dynamic one (based on a variable collection frequency). Specifically, the case of 198 

WEEE collected by retailers in an Italian municipality has been studied: WEEE collection services 199 

typically differ from other MSW collection services due to several issues, which are discussed in 200 

the following section.  201 

3. The test case: WEEE collection 202 

In this section, the main issues regarding WEEE flows and current organization of collection 203 

services are analyzed. The WEEE is one of the fastest growing flows worldwide. The estimated 204 

world production of WEEE in 2014 was of about 41.8 Mt, of which about 6.5 Mt collected and 205 

treated by formal national take-back systems, while the forecasted growth rate is of 4-5% per year 206 

until 2018 (Baldé, 2015), which is about three times the growth of MSW flows (Duygan and 207 

Meylan, 2015). The importance of this waste flow is also related to the composition of end-of-life 208 

products, which contain high value materials, as well as hazardous substances (Elia and Gnoni, 209 

2015; Mihai and Gnoni, 2016). The collection service represents the first critical process to design 210 

in order to prevent environmental damages caused by an incorrect management of WEEE. 211 

Therefore, most legislations and guidelines about WEEE management focus on collection targets; 212 

some of them are being updated worldwide, aiming at facilitating material recovery and diversion 213 

from landfills and illegal export to developing countries. The EU issued a new directive (Directive 214 

2012/19/EU) aiming to align the European WEEE collection service to current market dynamics 215 

(De Felice et al., 2014). An important innovation affects the collection target: it has been modified 216 

from a previous fixed amount (4 kg per inhabitant per year) for all EU countries to a “floating” 217 



target estimated based on a percentage (45% in 2016, 65% by 2019) of the EEE sold in the three 218 

previous years in each EU country. Another innovation regards the collection methods available 219 

for waste collection users: the previous well-known “one-to-one” service (allowing customers to 220 

give back to the retailer an old EEE when buying a new one) has been integrated with the so called  221 

“one-to-zero” model. This one forces retailers to provide also the collection of small WEEE for 222 

users, even when they do not buy a new product. Both these innovations aim at increasing the 223 

quantities of WEEE collected through reverse logistics systems, which need to be more responsive 224 

and efficient in satisfying the demand. Moreover, the variability of the quantities to be collected 225 

at the retailer’s facilities will most likely increase: the introduction of the “one-to-zero” solution 226 

adds a further source of uncertainty to the waste generation rate, highly influenced by an 227 

unpredictable customers’ behavior.  228 

All these factors require new reverse logistics models, which have to be flexible and effective to 229 

satisfy the demand, but also responsive to face all the increased uncertainties (Mihai and Gnoni, 230 

2016). As mentioned in Section 2, fixed schedules are planned considering the forecasted demand 231 

based on average historical data (Fig. 1). Uncertainties due to the introduction of the new “one-to-232 

zero” collection service can sensitively decrease the effectiveness of such forecasts, adding 233 

variability to the already hardly predictable WEEE flow. A dynamic collection scheme based on 234 

waste monitoring and enabled through a PSS solution could allow a higher responsiveness of the 235 

system while increasing the logistic efficiency, and needs to be further explored. 236 

3.1 The WEEE collection system in Italy 237 

Like in most European countries, there is a dual channel for WEEE collection services in Italy. 238 

One is carried out by the local MSW collection service provider, which usually includes fixed 239 

collection points where the user can bring WEEE (Favot et al., 2016). The other one is carried out 240 

directly by EEE retailers, which have to collect waste from customers when requested, through the 241 

“one-to-one” and the “one-to-zero” modes, as regulated by the European directive (Fig. 2). Five 242 



groups of WEEE are defined by the Italian legislation, which includes bulky wastes (i.e. from 243 

white and brown goods) as well as small items, like PCs or mobile phones. Each retailer can collect 244 

all these categories or only a part, according to the size of its retail area. Retailers could preliminary 245 

stock the WEEE collected, although the quantity stored cannot exceed the weight of 3.5 tons. Thus, 246 

they have to organize the collection service with a certified transport service provider company 247 

that moves their WEEE to recycling facilities. Planning this service is not a simple issue, as on 248 

one side it has to guarantee the strict respect of the maximum stocking quantity defined by law; on 249 

the other side, aiming to respect this limit, retailers have a tendency to plan a high collection 250 

frequency for facing uncertainties, thus determining higher service costs. The low predictability 251 

of customers’ behavior increases the uncertainty of return flows, resulting in a high variability of 252 

the demand for the collection service (Elia and Gnoni, 2015) as depicted in Figure 2.  253 

[Insert Figure 2] 254 

Figure 2: Actors and flows of WEEE collection systems in Italy 255 

Therefore, there is need for effective collection models that can provide service continuity while 256 

ensuring economic sustainability for the retailers. In the following sections, different collection 257 

service alternatives (based on a fixed and a dynamic frequency) are described for WEEE collection 258 

in a Southern Italy municipality; a simulation based tool has been developed to assess their 259 

technical performance aiming to support an effective design of the WEEE collection service.  260 

4. Materials and methods 261 

In this section, the methodology adopted for the analysis is presented.  262 

Hybrid simulation modelling allows combining the main strengths and benefits of different 263 

simulation modeling techniques (i.e. Discrete Event Simulation, System Dynamics, Agent Based 264 

Modeling) (Lättilä et al., 2010). Recent research shows how this approach can be effective in the 265 

design and management of PSS solutions (Rondini et al., 2017). Therefore, a hybrid simulation 266 



model has been developed to compare different collection schemes in a test case applied in the 267 

city of Lecce (Italy). Since the purpose of this work is to analyze the efficiency and effectiveness 268 

of different approaches, a sample of EEE retailers present in the municipal area has been 269 

considered (Fig. 3). The analysis involves two types of retailers: five big EEE stores, which have 270 

to collect all WEEE categories from customers, and ten small retailers, who sell only one EEE 271 

typology (i.e. lighting devices)  and shall collect only this type of waste. For this last case, we have 272 

assumed a maximum storage capacity of each small retailer (equal to 30 kg) based on current 273 

experience deducted from the field. This limit is not established by the Italian law, but it represents 274 

a reasonable amount of these items to collect even for small retailers. 275 

 276 

[Insert Figure 3] 277 

Figure 3: Location of the big (green) and small (orange) retailers in the area considered in 278 

the GIS environment. 279 

For each retailer, the process of WEEE generation has been simulated through System Dynamics 280 

(SD) modeling technique (Forrester, 1961) based on stocks (levels) and flows (rates) logic. Each 281 

WEEE deposit (see Fig. 4) is modelled by a stock, which is fed by a rate calculated as the sum of 282 

the “one-to-zero” and the “one-to-one” components, both weighted by a zone coefficient. This 283 

latter has been modeled through a Pert distribution, with different values for each retailer 284 

depending on specific location factors (e.g. its position, its retail extension). The “one-to-one” 285 

component has been considered as 45% of the EEE sales, assuming that the minimum target 286 

established by law would be reached (see Equation 1).  The stock is emptied every time a collection 287 

activity occurs.  288 

 289 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑍𝑍𝑍𝑍10  ∗  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 45%(𝑍𝑍𝑍𝑍11  ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  (1) 290 



 291 
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Figure 4: WEEE estimation model logic developed with System Dynamics simulation. 293 

Data about EEE sales, used in the System Dynamics model, have been derived from national 294 

reports (CdC RAEE, 2016, 2015, 2014) based on average values of the last three years (2013-295 

2015), which are now available. Furthermore, sales for the city of Lecce have been estimated based 296 

on its current population starting from national data. All sales intercepted by the analyzed retailers 297 

represent 50% of the total sales in the municipality: this assumption is based on the extension of 298 

their retail area. These data, together with the ones used for estimating the zone coefficients in 299 

equation 1, are reported in the Appendix (Tables A.1, A.2, A.3 and A.4). 300 

The routing process in the collection service has been simulated adopting Agent Based Modeling 301 

(ABM) simulation technique, moving in a Geographic Information System (GIS) environment. 302 

For big retailers, a dedicated truck is used for each customer, given the quantity of WEEE to collect 303 

(about 3.5 tons per trip). For small retailers, a truck is used to serve different customers. Every 304 

time a service order is generated, the truck starts its collection trip and serves the customers, 305 

according to the collection scheme considered. Once the truck is at the customer’s location, a 306 

Discrete Events Simulation (DES) module simulates the collection process. After the service is 307 

completed, the truck brings the e-waste collected to the treatment (recovery) plant. For both big 308 

and small retailers, the critical levels are calculated considering a safety period before reaching the 309 

maximum level, which is three days for the fixed schedule and one day for the dynamic schedule, 310 

based on the average daily quantity of WEEE collected (45% of forecasted sales). 311 

The simulation time has been set at six months. For each scenario, twenty replications per instance 312 

were run, giving a confidence level of 95%.   313 



Three design alternatives for WEEE collection have been considered: Alternative 1 (A1), 314 

Alternative 2 (A2), Alternative 3 (A3). A1 consists of a collection service with fixed schedule (i.e. 315 

collection frequency) both for big and small retailers; emergency extra calls (with increased costs) 316 

could be required by the retailer when the level of WEEE reaches unexpectedly a critical threshold. 317 

This first scheme is the one currently applied by retailers, thus representing the baseline for a 318 

comparison with innovative approaches. A2 consists of a dynamic schedule based on variable 319 

collection frequency: WEEE level is monitored in real time and the collection service is performed 320 

when the bin level reaches a critical threshold limit. The service provider has defined a specific 321 

rule for small retailers: when one user reaches the critical level, all other users are checked and the 322 

collection service is performed only for those who exceed the minimum collection level of 70%. 323 

This value has been set considering both field experience and data discussed by McLeod et al. 324 

(2014), where the authors reported that the dynamic collection system reached the best 325 

performance when the collection target was set between 50% and 75% of the maximum filling 326 

level. A3 consists of a mixed solution considering a different rule for small retailers under a 327 

dynamic collection service: every time one user activates the call, all customers are served 328 

regardless of their filling level.   329 

To assess the efficiency of the collection service, the following Key Performance Indicators (KPIs) 330 

have been adopted:  331 

i. the number of collection services performed for small and big retailers;  332 

ii. the number of emergency services performed (only for A1);  333 

iii. the total distance in km covered by the collection trucks for small and big retailers;  334 

iv. the average, maximum and minimum filling level of the truck for small retailers. 335 

Moreover, the total amount of WEEE collected has been monitored. 336 



A first experiment (experiment 1) compares the alternatives as previously described; then, a 337 

sensitivity analysis considering different values for some design parameters under both 338 

alternatives is performed. 339 

5. Results and discussion  340 

5.1 Experiment 1 341 

The results of the simulation for experiment 1 are reported in Table 2, along with the variation of 342 

KPIs given by alternatives A2 and A3 compared to the baseline (A1).  343 

The first result to highlight is the drastic decrease in the number of collection services performed 344 

in six months. For big retailers, the total number of services decreases of about 36% adopting A2 345 

and A3 scenarios: this is mainly due to the elimination of extra calls, as all calls are performed “on 346 

request”. It has to be noted that, even excluding the extra calls performed, more collection services 347 

are still scheduled in the baseline (46 on average) than in both dynamic scenarios (33 on average). 348 

Consequently, the estimated total distance decreases also by about 37%. A similar outcome can be 349 

observed for small retailers, where A2 and A3 scenarios present a better performance. The number 350 

of collection services decreases by more than half in A2 (from about 56 of A1 to 25), with 351 

corresponding distance savings of almost 54% compared to the baseline. A higher efficiency can 352 

be observed with A3, where the estimated number of services decreases heavily as the average 353 

value is equal to 10 (80% lower than the baseline). In this case, the average distance decreases by 354 

almost five times, reaching the absolute minimum value of about 580 km. Therefore, based on 355 

estimated results and under these assumptions, the mixed solution seems to be the most efficient 356 

collection service scenario in terms of technical efficiency. This is confirmed considering the 357 

utilization of the truck: while there is a range of about 150 kg of difference between the maximum 358 

and minimum filling levels observed for both the fixed (A1) and the dynamic schedule (A2), the 359 



mixed solution (A3) allows a more homogeneous use of the resource, with a range of only 35 kg 360 

and an average of 218 kg, which is about five times higher than the average in alternative A1.  361 

A1 is the worst scenario for both big and small retailers, mainly due to the high number of extra 362 

services required. This is related to the uncertainty (in terms of both quantity and time) introduced 363 

by the simultaneous presence of “one-to-one” and “one-to-zero” collection components.  364 

Table 2: Simulation results of experiment 1 and % variation of KPIs (alternatives A2 and A3 365 
compared to A1). 366 

 A1 - Fixed schedule A2 - Dynamic schedule A3 – Mixed solution 
Mean St.dev. Mean St.dev. Δ% 

compared 
to A1 

Mean St.dev. Δ% 
compared 

to A1 

Big 
retailers 

WEEE 
quantity [kg] 

110,628.90 713.99 112,384.03 3348.18 +1.6% 112,727.99 2313.83 +1.9% 

N° collections 52.35 2.21 33.45 1.00 -36.1% 33.50 0.69 -36.0% 
N° extra calls 6.35 2.21 -- -- -100.0% -- -- -100.0% 
Tot distance 
travelled [km] 

2,585.82 110.51 1,629.17 48.80 -37.0% 1,634.50 33.61 -36.8% 

Small 
retailers 

WEEE 
quantity [kg] 

2,191.20 18.53 2,075.20 31.37 -5.3% 2,129.59 70.09 -2.8% 

N° collections 55.90 2.13 24.65 1.79 -55.9% 9.75 0.44 -82.6% 
N° extra calls 48.90 2.13 -- -- -100.0% -- -- -100.0% 
Tot distance 
travelled [km] 

2896.75 107.87 1342.09 90.53 -53.7% 582.61 26.55 -79.9% 

Average truck 
filling [kg] 

39.25 1.32 84.77 6.27 +116.0% 218.58 4.87 +456.9% 

Max truck 
filling [kg] 

171.29 10.25 163.32 27.29 -4.7% 234.90 5.80 +37.1% 

Min truck 

filling [kg] 

27.05 0.01 29.22 6.68 +8.0% 200.31 8.15 +640.5% 

 367 

5.2 Sensitivity analysis: Experiment 2 368 

To explore the potentialities of the simulation tool in the design of a collection system, a sensitivity 369 

analysis has been performed in experiment 2. Different design parameters have been set for 370 

alternatives A1 and A2 in order to evaluate their new performance compared to the best outcome 371 

of experiment 1 (i.e. A3). The purpose is to outline the potentialities of the developed simulation 372 

model.   373 



An improved scheduling policy has been tested for A1 (A1.1), increasing the collection frequency 374 

by considering the average demand plus a safety level (equal to 10%) for both big and small 375 

retailers, aiming to respond to the fluctuations given by the “one-to-zero” component of the 376 

demand.  377 

For A2, a change in the threshold critical value has been introduced: the control level has been 378 

decreased from 70% to 50% (A2.1) in order to point out the impact of this variation. Results of 379 

experiment 2 are reported in Table 3. 380 

Results show that A1.1 performs globally better than A1 as the estimated number of emergency 381 

services requested for big retailers is zero, and it also slightly decreases for small retailers. 382 

However, this improvement is not sufficient to reach the performance of A3 scenario: as reported 383 

in Table 3, A1.1 still presents a higher number of performed services, both for big retailers 384 

(+52.2%) and small ones (+421.5%), resulting in a longer distance covered by the operating trucks 385 

(about +54% and +352% for big and small retailers respectively). Although the quantitative results 386 

obtained in our test case cannot be extended to other cases, an interesting point has to be noted: 387 

even when forecast values about waste generation flows in fixed schedule policy are improved 388 

considering the “one-to-zero” component of the demand, its overall technical performance does 389 

not reach the efficiency of a dynamic solution. This is also confirmed by the resource utilization 390 

value of small trucks, which presents a range of 140 kg in A1.1, compared to 35 kg in A3, thus 391 

confirming the results of experiment 1.  392 

 393 

Table 3: Simulation results of experiment 2 and % variation of KPIs (alternatives A1.1 and A2.1 394 
compared to A3). 395 

 A1.1 - Fixed schedule NEW A2.1 - Dynamic schedule NEW 
Mean St.dev. Δ% 

compared 
to A3 

Mean St.dev. Δ% 
compared 

to A3 

Big 
retailers 

WEEE quantity 
[kg] 

111,398.02 849.28 -1.2% 112,720.42 2,526.53 No 
variation 

N° collections 51.00 0.00 +52.2% 33.50 0.76 No 
variation 



N° extra calls 0.00 0.00 -- -- -- -- 
Tot distance 
travelled [km] 

2,520.94 0.00 +54.2% 1,633.38 36.87 -0.1% 

Small 
retailers 

WEEE quantity 
[kg] 

2,012.48 32.77 -5.5% 2,093.22 55.80 -1.7% 

N° collections 50.85 2.36 +421.5% 13.25 2.61 +35.9% 
N° extra calls 43.85 2.36 -- -- -- -- 
Tot distance 
travelled [km] 

2,632.67 121.31 +351.9% 766.10 137.30 +31.5% 

Average truck 
filling [kg] 

39.74 1.74 -81.8% 164.17 33.56 -24.9% 

Max truck 
filling [kg] 

167.87 4.41 -28.5% 224.06 15.69 -4.6% 

Min truck 
filling [kg] 

27.05 0.01 -86.5% 88.89 62.41 -55.6% 

 396 

Similar considerations can be derived for A2.1. This solution performs better than A2 for small 397 

retailers, decreasing the number of services (-46%) and the distance covered (-43%). On the other 398 

side, A2.1 presents an increase of about +36% for the number of collection services and +31.5% 399 

for the distance travelled compared to A3, which is still the best solution. Moreover, the range of 400 

the filling level for the truck is still 135 kg, indicating a resource use not as efficient as in A3.  401 

5.3 Discussion 402 

While literature suggests that dynamic scheduling could be a successful strategy to improve the 403 

efficiency of waste collection systems, the experiments run show that pure dynamic models may 404 

not always be the best solution. In the case considered, the mixed model has the best performance, 405 

exploiting the advantages of the two pure alternatives. On one side, the real time data collected 406 

through IoT technologies allow the service provider to collect waste when at least one customer 407 

actually needs to be served, answering to the necessity of the demand, which is highly 408 

unpredictable for WEEE. On the other side, the increased sharing of the resource (truck), similar 409 

to the fixed schedule solution, allows a higher utilization rate, decreasing transportation costs and 410 

pollutant emissions, which are related to the distance covered (Zsigraiova et al., 2013). Moreover, 411 

results demonstrate the efficacy of the proposed hybrid simulation model to evaluate quantitatively 412 

different design alternatives and assess the efficiency of dynamic solutions compared to traditional 413 

ones. The adopted KPIs are related to the technical performance of the analysed alternatives; they 414 



could also be adopted as an indirect measure to estimate economic and environmental outcomes. 415 

However, some criticalities and limitations have to be underlined. As specified in section 4, this 416 

test case is based on a sample of retailers in the municipal area. No data about the collected WEEE 417 

per retailer are still available to validate quantitatively the results obtained. Moreover, no historical 418 

data are yet available about the incidence of the “one-to-zero” component on the WEEE flow, 419 

which is unpredictable for its nature and strongly dependent on the behaviour of citizens. Under 420 

these conditions, the simulation model has provided quantitative results with considerations that 421 

could be used in the preliminary design of new collection services for WEEE. Results from 422 

experiment 2 show that improving the forecasts of WEEE flows can allow a better planning of the 423 

fixed schedule. However, without consolidated knowledge about the “one-to-zero” flows, reaching 424 

a high reliability of predictions represents a very difficult task even for retailers, which should be 425 

considered when designing a collection service. Thus, despite the lack of accurate data for a 426 

complete simulation validation, we can outline that the potential benefits provided by dynamic 427 

scenarios (pure dynamic or mixed one) can be higher than traditional fixed schedule schemes as 428 

they can adapt better to demand fluctuations.  429 

From a theoretical perspective, the application of PSS models in waste collection and management 430 

has to be deeper analysed. Literature about PSS mostly focuses on the transition from product to 431 

PSS through the servitization process, while the advantages related to the adoption of PSS in 432 

service sectors is still largely unexplored. Therefore, further research could aim at understanding 433 

the challenges and opportunities related to these innovative business models in the waste sector. 434 

6. Conclusions 435 

Recent European directive sets new collection targets and rules for WEEE. The “floating” target 436 

proportional to EEE put on market and the introduction of the “one-to-zero” component increase 437 

the variability of the flow over time while decreasing the effectiveness of forecast methods to 438 

assess the demand of collection service from users.  439 



This work is an attempt to explore new approaches to the design of WEEE collection schemes. 440 

Two innovative alternatives based on PSS solutions that enable dynamic scheduling are described 441 

and compared to the traditional fixed schedule scheme, widely adopted by service providers 442 

especially for commercial users (e.g. retailers) in a MSW system. The collection service 443 

alternatives have been compared through a hybrid simulation model (based on GIS, DES, SD and 444 

ABM modules) that allows estimating selected KPIs. Results of the test case show that dynamic 445 

collection services perform better than traditional fixed ones, allowing essentially a higher 446 

flexibility of the service, which could fit better the fluctuations of customers’ demand. This is a 447 

critical point: after the adoption of the new EU directive, further research is needed on the 448 

collection and analysis of data about WEEE generation and collection, especially related to the 449 

“one-to-zero” component. Moreover, an increased resource utilization can generate savings to 450 

customers also from an economic and environmental point of view. Further developments could 451 

be oriented to introduce also the impact due to high investment costs connected to the adoption of 452 

a dynamic collection service compared to traditional schemes, in order to assess the overall 453 

economic feasibility and sustainability of these models. Finally, research could focus on defining 454 

a general framework for the adoption of PSS in the waste management sector, studying the benefits 455 

and barriers related. 456 

 457 
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 586 

Appendix 587 

Table A.1. Data about EEE sold in Italy and Lecce per year (2013-2015) 588 

Year EEE sold in Italy (tons) EEE sold in Lecce (estimated tons) 

2013 736625.5 1142.8 



2014 804452.9 1248.0 

2015 794897.0 1233.2 

Average 778658.5 1208.0 

 589 

Table A.2. Distributions adopted to model waste flows. 590 

Flow Distribution adopted in S1 
[kg/h] 

Distribution adopted in S2 
[kg/h] 

Sales for big retailers Uniform(10, 18) Pert(8, 22, 14) 

1to0 for big retailers Uniform (0.1, 0.5) Pert(0.1, 2, 0.3) 

Sales for small retailers Uniform(0, 0.2) Pert(0, 0.3, 0.1) 

1to0 for small retailers Uniform (0, 0.04) Pert(0, 0.04, 0.02) 

 591 

Table A.3. Mode of the zone coefficients used for big retailers (Ret). 592 
 

Ret 1 Ret 2 Ret 3 Ret 4 Ret 5 

Mode of zone 
coefficient (1to0) 

1 0,9 0,7 0,6 0,6 

Mode of zone 
coefficient (1to1) 

1 0,8 0,7 0,6 1 

 593 

Table A.4. Mode of the zone coefficients used for small retailers (Sr). 594 
 

Sr 1 Sr 2 Sr 3 Sr 4 Sr 5 Sr 6 Sr 7 Sr 8 Sr 9 Sr 10 

Mode of 
zone 

coefficient 
(1to0) 

1 0,4 0,4 0,8 0,5 0,9 0,7 1 0,6 0,4 

Mode of 
zone 

coefficient 
(1to1) 

1 0,9 1 0,8 0,6 0,7 0,9 0,8 0,8 0,5 

 595 
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