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A Multi-matrix E-nose with Optimal Multi-ranged
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Abstract— Since hundreds of volatile organic
compounds (VOCs) produced by cell metabolism
and released into the blood are excreted through
exhaled breath or body fluids, the volatile com-
position (volatilome) of human samples reflects
a subject’s state of health and early signals any
abnormal deviation from healthy to disease. The
chemical volatilomic profile of biological matrices
can be transduced in a digital fingerprint by low
cost and easy-to-use electronic nose (e-nose) de-
vices based on gas sensor arrays. The e-noses
can be used to aid clinical diagnosis supporting
conventional diagnostic methods that sometimes
require expensive or invasive medical procedures
and delays in diagnoses. In this paper, an e-nose devoted to the human volatilome fingerprinting is presented. The
device, code-named SPYROX, adopts an array of 8 metal-oxide (MOX) gas sensors and it is able to analyze response
signals from different matrices (multi-matrix samples), dealing with exhaled breath and headspace analysis of human
biological samples. While other works in literature neglect the design of the interface circuit, here an optimal multi-ranged
analog front-end (AFE) circuit is proposed. It aims to the optimization of the read-out sensitivity which, ultimately, leads
to accurate training datasets and, consequently, to high classification scores. Finally, the efficacy of the device is proved
by testing both chemical standards and mixtures. As a result, a classification accuracy of 100% is achieved with a linear
discriminant model. The experimental results give a proof on the system’s efficacy to the fingerprint analysis of complex
gas mixtures, which are typical of human volatilome.

Index Terms— electronic nose, sensor systems and applications, chemical sensors, biomedical electronics, analog front-
end

I. INTRODUCTION

According to the European Cancer Information System
(ECIS), the burden of cancer is increasing in the EU, mainly
driven by ageing in the population. New cases reached 2.7
million in 2022, of which the most common were breast cancer
for women and prostate cancer for men with incidences of 29%
and 22.4%, respectively [1]. Although gold standard methods,
such as laboratory tests of biological samples, computed
tomography (CT), magnetic resonance imaging (MRI), give
the results with the highest possible accuracy in the diagnosis
process, in many cases such results are produced too late for
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an effective cure. Therefore, to significantly improve patients’
chances of survival, there is an urgent need for new early-stage
cancer detection, screening, and diagnostics tests. The medical
and scientific communities are working together to develop
fast, low cost, low-power, portable, and non-invasive diagnos-
tic instruments, which can be accepted by the population, easy
to access and widespread in health systems, overcoming all
the barriers that cause a delay in cancer diagnosis. Electronic
noses (e-noses), devices based on gas sensor arrays, constitute
a recognized technology that is mature enough to enter clinical
practice by satisfying all the above-mentioned requirements
[2]–[5]. An e-nose, whose general architecture is depicted in
Fig. 1, is an electronic sensing device intended to detect odors
or flavors as global fingerprint with no separative mechanism.
The expression ”electronic sensing” refers to the capability of
mimic olfactory sense using sensor arrays, generating signal
patterns that are used for characterizing odors and pattern
recognition systems. In the figure, the sensor array of the e-
nose is exposed to a complex odor j. The electric signals
from the sensors are conditioned by the analog front-end
(AFE) circuit and then converted from the analog domain to
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Fig. 1. Architecture of an e-nose.

the digital domain by means of an analog-to-digital converter
(ADC). The digitized signals are pre-processed to extract the
sensor features, i.e., xn,j in Fig. 1. These are the relevant
features from the temporal sensor curves, that will be used
as inputs for the pattern recognition analysis. The latter aims
to determine the underlying relationships between one set of
independent variables, i.e., the outputs from a sensor array,
and another set of dependent variables, i.e., odor classes and/or
component concentrations by using classifier algorithms and
statistical multivariate analysis. The goal is to identify, classify,
and quantify, when possible, different odor classes of unknown
odors. The rationale behind the use of e-noses in diagnostics
is their ability to provide a health-related fingerprint of the
volatile organic compounds (VOCs) of exhaled breath and
body fluids (blood, urine, saliva, semen, etc.) [6]–[9]. VOCs
are metabolites resulting from cellular biochemical activity;
they are present in all biological matrices as well as in exhaled
alveolar breath where they are excreted at the very onset of
any disease. The volatilomes, i.e., the entire VOC profiles
of human biosamples, represent valuable volatile signatures
of health status that can be used to detect early stages of
disease. In addition, the volatilome also contains exogenously
derived compounds that do not derive from metabolic pro-
cesses (e.g., environmental contaminants), but can participate
in eliciting adverse health effects. Basically, e-noses are able
to discriminate odor (or VOC) patterns from sets of sensors’
responses. Although their ultimate goal is not to separate and
identify VOCs in the pattern, as gas chromatography/mass
spectrometry (GC-MS) does, their characteristics make them
promising candidates for discriminating healthy versus sick
population samples from the signals patterns from sensors
(fingerprints). The literature shows that e-noses have been
successfully applied to the discrimination of patients with
cancer and other diseases from healthy controls [10]–[17]. As
an example, in [18] a low-cost e-nose based on breath analysis
with 5 metal oxide semiconductor (MOX) gas sensors was
developed for non-invasive diagnosis of chronic obstructive
pulmonary disease (COPD) and lung cancer. Classification
of patients and controls was produced in a post-processing
step by ensemble learning methods. In [19] an e-nose with 6
MOX gas sensors was developed for prostate cancer diagnosis
based on urinary VOCs; classification predictions have been
obtained by a post-processing learning algorithm based on
Boruta algorithm. In [20] an array of 5 MOX sensors was
used for the discrimination of lung cancer patients and at-
risk healthy subjects based on breath analysis; support vector
machine (SVM) and AdaBoost algorithm have been used.

Exhaled breath samples have also been analyzed in an e-nose
based on 7 MOX gas sensors and various classifiers (linear
discriminant analysis - LDA, support vector machine - SVM,
and multilayer perceptron - MLP) developed in [21] for lung
cancer diagnosis. Breathprints have also been used for lung
cancer detection in the e-nose developed by [22], where an
array of gas sensors based on different sensing technologies
was used.
In this paper, an e-nose devoted to the human volatilome
fingerprinting of different matrices (breath or biofluids) is
presented. Its codename is SPYROX and it was designed as a
portable, standalone, and versatile system for disease detection
as well as for human biomonitoring to assess health risk in
population [23]–[25].

II. ELECTRONIC NOSE IMPLEMENTATION

A. System Overview

A block diagram depicting the architecture of the imple-
mented system is shown in Fig. 2. The SPYROX e-nose
consists of an automation/control system for air flow and VOC
sampling, a power module, a gas-sensor array, and an elec-
tronic mainboard, all housed in a transparent plexiglass case.
The choice of this material is purely aesthetic and, as detailed
in the following sections, it is not exposed in any way to the
VOCs of the analyzed sample. The operation of the device,
along with the data logging and analysis, can be managed
by a Raspberry-PI-based embedded computer through a 7′′

touch panel. This embedded computer includes the operat-
ing system and the software environment for data analysis.
Alternatively, data can be also retrieved by connecting an
external personal computer (PC) through the USB/serial link.
A specific design choice consisted in separating the gas-sensor
array, implemented on the sensor module daughterboard, from
the read-out and processing electronics, implemented on the
Multisense V2 mainboard. Thanks to this choice, different
sensor modules can be used with the same mainboard, making
the device flexible for use in different sensing applications.
Fig. 2 and Fig. 3 depict a block diagram and a photo of the
Multisense V2 mainboard, respectively. A detailed description
of the mainboard can be found in [26]. Briefly, the mainboard
provides 10 resistance channels and 10 voltage channels for
read-out from chemiresistive gas sensors and voltage read-out
from generic sensors. The sensor module hosts 6 commercial
micro-electro-mechanical systems (MEMS) MOX-based gas
sensors on SMD (surface-mount device) package. Thanks to
the MEMS technology, the size and fabrication costs of sensors
are significantly reduced and this leads to smaller and cheaper
sensing devices [27]. In addition to the 6 SMD sensors, a pair
of sockets for sensors in 4 pin through-hole TO-5 packages,
was provided, with a final array configuration of 8 sensors.
Since the sensor module is removable, the benefit of easy
hardware replacement was given, as the sensors degrade their
performances due to aging. As shown in Fig. 2, dual-mode
sampling is performed, allowing sampling of breath from
collection bags (usually made of Tedlar) or headspace from
a gas-tight vial containing a liquid or solid biosample. In
addition, SPYROX can sample ambient air for application
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Fig. 2. Architecture of the implemented e-nose.

Fig. 3. Photo of the realized Multisense V2 mainboard (white solder-
mask) with the sensor module inserted (blue soldermask).

in continuous environment air monitoring. Although in the
described application the 8-sensor array is operated at con-
stant temperature, the system also supports the temperature
modulation operation by driving the sensors’ integrated heaters
with pulse width modulation (PWM) signals. A piezo-pump
controller provides the circuit for interfacing a piezoelectric
micropump (mod. mp6-air, Bartels Mikrotechnik GmbH),
which offers gas transportation at a controlled flow. A section
for serial/USB communication, a slot for the micro-SD card
mass memory, a module for WiFi connectivity for sending data
remotely, and a module for Ethernet connectivity ensure all
useful connectivity solutions. The device is thus ready for data
transmission for Internet-of-things (IoT) or cloud frameworks.

B. Proposed Analog-Front End (AFE) Circuit Design

The AFE section represents the interface between the MCU
and the sensor module. The latter module mounts the MOX-
based chemiresistive gas sensor array, whose working principle
is based on electrical resistance changes of sensing layers in
response to gases and volatiles [27]. As the sensor’s resistance
can vary over several decades [28], a circuit based on a multi-
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Fig. 4. Circuit schematic of a voltage divider with multi-ranging
approach. As an example, the RS1 is selected through the multiplexer.

TABLE I
VALUES OF SELECTED RESISTORS.

RA1 1 kΩ
RA2 9 kΩ
RA3 90 kΩ
RA4 900 kΩ

TABLE II
ALLOWED CONFIGURATIONS FOR MOSFETS’ GATE SIGNALS AND

CORRESPONDING LOAD RESISTOR VALUE. L AND H STAND FOR

LOW-LEVEL AND HIGH-LEVEL GATE SIGNALS, RESPECTIVELY.

S1 S2 S3 RL

L L L 1MΩ
L L H 100 kΩ
L H L 10 kΩ
H L L 1 kΩ

ranging voltage divider, whose basic architecture is shown
in Fig. 4, was designed for a proper read-out in the wide
resistance range. Multi-ranged voltage divider circuits are
widely adopted in MOX sensors applications and they are also
suggested by sensors’ manufacturers as a way to promptly
connect the sensors to the MCU while maintaining a low
cost, a low design effort, and low parts count on PCB. Such
circuits are appropriate for MOX sensors since these exhibit a
large change in the resistance value [29]. Auto ranging is an
often overlooked critical aspect of sensor read-out interfaces.
However, the datasheets of the sensors do not provide any
suggestions on how to correctly perform a scale change with-
out losing accuracy or continuity in the sensor read-out signal,
nor has this ever been a topic of discussion in the scientific
literature. Thus, the proposed theoretical derivation aims to
define a general approach to properly shift the resistance range
while optimizing the read-out sensitivity in the whole dynamic
range. Fig. 4 includes the sensors, RS1, RS2, . . . , RSN , that
are connected between the circuit’s supply voltage VDD and a
load resistor, RL, through an analog multiplexer (MUX). The
RL load resistor is made of 4 selectable values, RA1, RA2,
RA3 and RA4, whose values are reported in TABLE I.

The circuit’s output voltage, VA, is buffered by means of
the OA1 operational amplifier (opamp) in voltage follower
configuration and it is converted in the digital domain through
the ADC integrated in the MCU. The MCP6021 opamp,
manufactured by Microchip Technology Inc., was selected
since it has a very good noise performance of 8.7 nV/

√
Hz
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at 10 kHz (typical), and an high gain-bandwidth product of
10MHz allowing the adoption of the board for a wide range
of sensing applications. The MCU provides a successive-
approximation ADC with maximum resolution of 12 bits and
maximum sampling rate of 2.4Msps. Considering RS as the
generic value of a selected sensor, the output voltage, VA, is
obtained through the voltage divider’s rule as follows:

VA = VDD · RL

RS +RL
(1)

where the VDD voltage is equal to 3.3V. The load resistor’s
value, RL, is changed with discrete steps through M1, M2 and,
M3 MOSFETs, operated as switches, to match the resistance
value of the sensor. The allowed MOSFETs configurations,
along with the corresponding values of RL, are reported in
TABLE II. The automated change of RL aims to maximize
the absolute sensitivity of the voltage divider circuit, defined as
the amount of change in the output, i.e., the output voltage VA,
in response to a change in the input, i.e., the sensor’s resistive
value RS . It is worth pointing out that the hereafter derivation
only aims to the maximization of AFE’s sensitivity. Indeed,
the sensitivity of gas sensor depends on intrinsic properties of
the gas-sensing material and on operating modes linked, for
example, to the working temperature of the sensor set through
its integrated heater. The absolute sensitivity of the voltage
divider is obtained as follows:

S(VA, RS) =

∣∣∣∣ ∂VA

∂RS

∣∣∣∣ = VDD ·RL

(RS +RL)2
(2)

The (2) is also called differential sensitivity since it is defined
as a derivative and it is measured in VΩ−1. From (2), it can
be deduced that the absolute sensitivity is maximized as RS

matches RL [29]. In the proposed multi-ranging approach, the
load resistor value, RL, is selected to maximize the read-out
sensitivity across 4 ranges of different order of magnitude. An
optimal multi-ranging approach was developed to program-
matically switch between adjacent ranges, as the voltage VA

crosses the high threshold VTH or the low threshold VTL

voltages. Thanks to this, the maximum read-out sensitivity is
guaranteed over the full read-out range.
For small variations ∆RS of RS , the following approximate
definition of absolute sensitivity is considered:

S(VA, RS) ≈
∣∣∣∣∆VA

∆RS

∣∣∣∣ (3)

Regarding the variation of the voltage divider’s output voltage,
∆VA, its minimum detectable value is limited by the quantiza-
tion noise of the ADC and, thus, by the selected resolution of
the latter. In general, smaller voltage variations can be digitized
by using an higher resolution, in terms of bits, of the ADC. By
assuming ∆VA in (3) as the root mean square (RMS) value of
the voltage variation, the signal-to-quantization-noise (SQNR)
is derived as follows:

SQNR =
(∆VA)

2

σ2
Q

=

(√
12 · (2N − 1)

VFS
· S(VA, RS) ·∆RS

)2

(4)
where N is the resolution, expressed in bits, of the ADC,
VFS is the full-scale voltage, and σ2

Q is the power of the
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quantization noise. A desirable condition, in order to acquire
a valid voltage signal, is to impose the signal power, ∆V 2

A,
greater or equal than the quantization noise power, σ2

Q. This
translates to the following condition:

SQNR ≥ 1 (5)

From (5), it is possible to derive the minimum detectable
variation of resistance by replacing the (2) in (4), and imposing
the SQNR equal to its lower bound, i.e., 1. By expressing the
resistance variation, ∆RS , as RS · ϵ and, by considering a
VFS equal to the VDD supply voltage, the following equality
is obtained:

√
12 · (2N − 1) · RL ·RS

(RS +RL)2
· ϵ = 1 (6)

From (6), the minimum relative variation of the RS resistance,
ϵ, is obtained as follows:

ϵ =
1√

12 · (2N − 1)
· RS +RL

RS ∥ RL
(7)

Fig. 5 shows the ε function by varying the ADC’s resolution
with a fixed RL of 10 kΩ. Here it is compared, in terms of ε,
the ADC integrated in the MCU, having selectable resolutions
of 6, 8, 10, and 12 bits, with an external 24-bits ADC. As it can
be noted, higher resolutions permits to achieve smaller ε. As an
example, the external 24-bit ADC would obtain a minimum ε
equal to 0.0000069%, i.e., 69 ppb, which results much smaller
than 0.028%, i.e., 280 ppm, achieved with the internal 12-bit
ADC. However, it is worth pointing out that such high ADC
resolution is not necessary in applications where MOX-based
gas sensors are involved. The reason can be found by deriving
the power of the output noise of the AFE circuit in Fig. 4.
By assuming both an ideal MUX and ideal MOSFETs, the
small-signal circuit of Fig. 6 can be considered to evaluate the
sampled noise power. e2m, e2R, and e2O are the power spectral
densities (PSDs) of the RS sensor, the RL load resistor, and
the opamp, respectively. The ADC behavior is modeled as a
sample-and-hold circuit with sampling frequency equal to fS ,
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followed by a quantizer. The PSD at the input of the ADC
can be derived as follows:

e2in = e2m ·
(

RS

RS +RL

)2

+ e2R ·
(

RL

RS +RL

)2

+ e2O (8)

Regarding e2m it is known that MOX gas sensors, over con-
trolled conditions in terms of flow and temperature, exhibit
noise phenomena. This can be observed in presence of one or
more gases and it is caused by adsorption–desorption (AD)
noise. This is due to fluctuations in the surface coverage of
species adsorbed on the surface of the polycrystalline gas-
sensing layer connected to variations in the balance between
adsorption and desorption at the sensor working point. This
leads to fluctuations in the charge exchange processes between
the adsorbate and the sensitive layer, in the heights of the
intergrain barriers, and in the final conductivity [30]. An
insight on the noise behavior of the AFE circuit comes from
a first order approximation of the (8). In particular, only
the thermal noise contribution of the MOX gas sensor is
considered and, in addition, it is assumed that RS = RL,
i.e., the sensor’s value is centered in a specific range. The (8)
is simplified as follows:

e2in = 2 · k · T ·RS + e2O (9)

An unwanted phenomenon, deriving from the ADC’s sam-
pling operation, is the aliasing which causes the folding of
noise in the Nyquist bandwidth. The result of the sampling
operation is to increases the e2in significantly by a factor equal
to π · fGBW /fS [31], where fGBW is the gain-bandwidth
product of the opamp. Thus, by multiplying the (9) by the
π ·fGBW /fS factor and by integrating it from 0 to the Nyquist
frequency, i.e., fS/2, the following power of the sampled noise
is obtained:

v2out,RMS = (2 · k · T ·RS + e2O) ·
π

2
· fGBW (10)

A constant e2O of (8.7 nV/
√
Hz)2 and a fGBW equal of

10MHz are considered from the MCP6021 datasheet. Assum-
ing a RS equal to 1MΩ, meaning that RS is centered in the
higher maximum range of 1MΩ, the worst-case v2out,RMS ,
equal to 0.13mV2, is obtained from (10). By imposing the
quantization noise power of the ADC equal to the calculated
electronic noise power, v2out,RMS , it can be derived the fol-
lowing ADC’s resolution, N , to guarantee a correct conversion

0 50 100 150 200 250 300 350 400 450 500

Time (s)

0.665

0.67

0.675

0.68

0.685

V
o
lt
a
g
e
 (

V
)

Fig. 7. Voltage measurement from a single gas sensor exposed to 2-
butanone.

from the sensor:

N = log2

(
VFS√

12 · vout,RMS

+ 1

)
(11)

By substituting the aforementioned values in (11), it turns out
that an ADC with a resolution equal to 11.4 bits is enough
for a correct conversion of the signal. As an example, Fig. 7
depicts the voltage measurement from the AFE connected
to the TGS2600 sensor during exposure to 2-butanone. The
reported measurement was performed with a constant flow of
20mLmin−1 at 60 ◦C. In the real case, a multitude of factors
contribute to the sensor’s noise power, such as flicker noise,
thermal phenomena, flow turbolences, etc. The sum of all
the noise contributions result to the measured power equal to
3.3mV2 from Fig. 7. This is much higher than the quantization
noise power for the 12-bit internal ADC, leading to a required
resolution of 9 bits from (11). Although the measured noise
power varies with the gas and with the selected range, the
noise process is prominent in every measurement.
The (7) is graphically represented in Fig. 8 for the selected
values of RL reported in TABLE II. The overall resistance
range from 100Ω to 10MΩ was considered with the maximum
ADC’s resolution for the chosen MCU, which is equal to 12
bits. The red thick curve in Fig. 8 is the resulting ϵ obtained
by applying the optimal multi-ranging approach, guaranteeing
the minimum relative variation for all resistance ranges. In
addition, from Fig. 8, it can be noted that the minimums of
ϵ are centered to the RL values and they have the following
expression:

ϵmin =
4√

12 · (2N − 1)
(12)

The concept of resistance and voltage threshold values,
between adjacent ranges, is introduced here in order to provide
a practical criterion to automatically switch between ranges.
This guarantees the minimum detectable variation in every
possible resistance range. The hereafter description is referred
to Fig. 9, which shows the relationship between read-out
resistance range (RS arrow in the figure) and voltage (VA line

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3343762

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

102 103 104 105 106 107

R
S

 ( )

0.01

 0.1

   1
 (

%
)

R
L
=1 k

R
L
=10 k

R
L
=100 k

R
L
=1 M

With auto-ranging

Fig. 8. Smaller detectable variation, ϵ, in percentage from the imple-
mented multi-ranged analog front-end.

VTL

THV

VDD 2
VDD 2

VDD 2
VDD 2

VDD 2

RLiRLi−1 RLi+1

. RRLi Li−1

RRLi−1 Li−2
.

.R RLi Li+1

RLi+2
.

AV

i+2i−1 i i+1i−2

THV

VTL

RLi+1

RS

Log scale

TL VTL

THV THV

V

Fig. 9. Voltage and resistance ranges involved in the multi-ranging
algorithm.

TABLE III
THRESHOLD RESISTANCE VALUES (R⋆

i,i±1)

R⋆
1,2 = R⋆

2,1 3.162 kΩ

R⋆
2,3 = R⋆

3,2 31.62 kΩ

R⋆
3,4 = R⋆

4,3 316.2 kΩ

in the figure) acquired by the ADC. A generic resistance range
i, centered at RS = RLi, is considered. Its adjacent ranges are
defined as i± 1 and they are centered at RS = RL,i±1. More
specifically, i + 1 is the higher adjacent range and i − 1 is
the lower adjacent range. As mentioned earlier, the read-out
sensitivity is maximized as the RS values approach RLi. This
condition corresponds to a VA voltage equal to VFS/2 or, in
this case, to VDD/2. The resistance values, R⋆

i,i±1, at which
the ϵ curves of the adjacent ranges intersect each other, is
obtained by equating the generic ϵi curve with its adjacent ϵi±1

curves. These resistance values represent the thresholds, in
terms of resistance, between adjacent higher and lower ranges
and they can be derived as follows:

R⋆
i,i±1 =

√
RLi ·RL,i±1 (13)

TABLE III shows the threshold resistance values, obtained by
substituting the used load resistor values of TABLE II in (13).
At R⋆

i,i±1 values, ϵ assumes the following maximum value:
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Fig. 10. Operation modes of the implemented pneumatic circuit.

ϵMAX =
1√

12 · (2N − 1)
·
(
√

RL,i +
√
RL,i±1)

2

R⋆
i,i±1

(14)

By using the proposed approach, the smaller detectable relative
variation, ϵ, is guaranteed to be bounded between ϵmin and
ϵMAX in the input resistance range. They are equal to 0.028%
and 0.039%, respectively, for the implemented circuit.
The low and high thresholds voltages for a given i range, VTL,i

and VTH,i, can be obtained from the voltage divider rule of
(1) by considering RS equal to (13) and RL equal to RLi.
The following expressions can be derived:

VTL,i =
VDD

1 +

√
RL,i

RL,i−1

(15)

VTH,i =
VDD

1 +

√
RL,i

RL,i+1

(16)

These voltages are used as threshold voltages in the optimal
multi-ranging firmware procedure, to switch from a range to
the adjacent one and, thus, guaranteeing the smaller detectable
relative variation, ϵ, of RS . Since the adjacent ranges have a
constant ratio of the respective RL,i values, the same values of
VTL,i = VTL and VTH,i = VTH can be used for switching in
all ranges. More specifically, by considering the RL,i values
of TABLE II, about 800mV and 2.5V are obtained for VTL

and VTH , respectively.
The read-out of the sensors, along with the multi-ranging
algorithm, is performed in circular scanning mode. As the
ADC completes a conversion, the next sensor is selected
through the analog MUX and the ADC is configured to
perform a new signal conversion. An high sampling period
of 400ms, for a complete acquisition cycle, was set. This
sampling time has proven to be suitable for the application
considering the slow response times of MOX gas sensors [32].

C. Pneumatic Circuit and Modes of Odor Sampling
Fig. 10 depicts the pneumatic circuit of SPYROX, whose

programmable configuration implements 3 operating modes:
(1) sampling from Tedlar bag, for the analysis of exhaled
breath, environmental air, etc; (2) sampling of the headspace
odor from a vial, for the analysis of volatile organic com-
pounds (VOCs) gases from biological samples such as blood,
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Fig. 11. Photo of SPYROX e-nose.

semen, urine, etc; (3) sampling of air from environment. The
sampled odor is transported, through the pipes, in a gas-
tight cell on top of the sensor module. The cell was realized
in polyoxymethylene (POM), a highly versatile thermoplastic
commonly used as engineering material for components ma-
chining. The device makes use of 3 pinch solenoid valves
(Asco, Emerson Electric Co.). Two of these electrovalves
are 3-way (mod. S305 07-ZE30H, one tube normally open,
one tube normally closed) and one is 2-way (mod. S104 09-
ZE30A, normally closed). The pneumatic circuit is made of
flexible (50 shore hardness) pipes (Tygon, Saint Gobain) that
are pinched by valves with an external mechanism, so that
the fluid only comes in contact with the tubing rather than
with the valve. This configuration makes SPYROX e-nose
particularly suitable for medical applications, where a very low
degree of samples contamination is mandatory. In addition,
the circuit comprises the piezoelectric micropump, providing
a controlled air flow of 20mL/min. Depending on the state of
these devices, a gas sampling input is selected. With reference
to Fig. 10, the following three configurations are allowed:

1) A-2, A-4 opened, all other closed: the gas is sampled
from bag;

2) A-1, A-3, A-5 opened, all other closed: the dynamic
headspace sampling from a vial is implemented and the
environmental air is used as carrier gas;

3) A-1, A-4 opened, all other closed: the environmental air
is forced in the gas tight cell. This operation is carried
out in order to pre-condition and recover the sensors’
resistance to their baseline value.

Fig. 11 shows a photo of the realized SPYROX e-nose with
all the components; the designed sensor module, along with
the gas tight cell, can be here noticed (see white cube in
the plexiglass case). The sensor array is composed by the
commercial MOX sensors reported in TABLE IV.

III. EXPERIMENTAL SECTION

A. Setup Considerations

The suitability of the SPYROX e-nose, for the analy-
sis of human volatilome fingerprints, was tested through a
classification test with both single chemical standards and
complex mixtures. As for the sampling method, sampling from
headspace vial (mode 2 of Fig. 10) was used. In a first instance,
chemical aqueous solutions of 12 different analytes were
prepared in headspace vials at a concentration of 1mgmL−1.
The selected analytes have been proven to be commonly
found in human volatilome [23] and are: 1-butanol, heptanal,
2-butanone, 3-pentanone, acetone, ethanol, hexanal, hexane,
isoprene, isopropanol, pentanal, pentane. The vial was kept in
a mini dry bath (see Fig. 11) and kept at 60 ◦C. Considering
the vapor–liquid equilibrium that occur in the headspace vial,
the C⋆ concentration in ppm of the saturated vapours in the
vial headspace for each analyte in the prepared solutions at
the T temperature, can be calculated as follows:

C⋆ =
P ⋆

P 0
atm

· 106 · T0

T
(17)

where P 0
atm is the atmospheric pressure measured in normal

condition, P ⋆ is the saturated vapour pressure of the analyte
in solution, and T0 is the normal temperature. Temperature
and pressure in (17) are expressed in K and kPa, respectively.
The P ⋆ pressure is obtained from Raoult’s law for a single
component in an ideal binary solution as follows:

P ⋆ = P ⋆
pure ·Xmol (18)

where P ⋆
pure is the vapor pressure of the pure component

and Xmol its mole fraction in the mixture. The calculated
gas concentration of the used analytes varies from a few
ppbv to hundreds of ppbv. This range of concentrations is in
agreement with that typically found in the breath [33], [34]. As
for the classification capabilities of the SPYROX e-nose, more
plausible results were obtained by testing some gas mixtures;
by considering 3 of the 12 standard chemicals, three binary and
one ternary mixtures were realized. Specifically, the following
mixtures were prepared in vials by using a concentration of
1mgmL−1 for each substance:

• 1) 2-butanone - hexane;
• 2) acetone - 2-butanone;
• 3) hexane - acetone;
• 4) acetone - 2-butanone - hexane.

Any reactions between the chemical standards in the binary
or ternary mixtures considered in the work are unlikely due to
the low concentrations involved. They represent a simplified
situation of a human biospecimen where hundreds of different
VOCs can be present simultaneously.

B. Measurement Procedure

A single sample measurement consists in the following
steps:

• A - Pre-conditioning;
• B - Gas exposure and signal acquisition;
• C - Recovery;
• D - Iteration.
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TABLE IV
ADOPTED SENSORS.

ID Sensor Manufacturer Declared calibration curves Heater voltages / power

S1 MiCS-6814
(NH3)

Amphenol SGX
Sensortech

Ammonia, ethanol, hydrogen,
propane, iso-butane

2.4V / 76mW

S2 MiCS-6814
(CO- RED)

Amphenol SGX
Sensortech

Carbon monoxide, hydrogen
sulfide, ammonia, hydrogen,
ethanol, methane, propane,
isobutane

1.7V / 43mW

S3 MiCS-6814
(NO2 - OX)

Amphenol SGX
Sensortech

Nitrogen dioxide, nitric oxide,
hydrogen

2.2V / 66mW

S4 AS-MLV-P2 ScioSense Carbon monoxide, butane,
methane, ethanol, hydrogen

3V / 50mW

S5 TGS8100 Figaro Carbon monoxide, ethanol,
hydrogen, methane, isobutane

1.8V / 15mW

S6 GM-502B Winsen Ethanol, formaldehyde, toluene 2.5V / 50mW

S7 TGS2600 Figaro Methane, carbon monoxide,
iso-butane, ethanol, hydrogen

5V / 210mW

S8 TGS2602 Figaro Hydrogen, ammonia, ethanol,
hydrogen sulfide, toluene

5V / 280mW

During step A, environmental air is pumped into the gas cell
in order to stabilize the sensors’ resistance to their baseline
values, Rair. This step takes 40min and it is carried out
by the pneumatic circuit in mode 3 (see Fig. 10). During
step B, the pneumatic circuit is set in mode 2 and the odor
is pumped, at constant flow, from the vial’s headspace into
the gas cell. This operation takes 20min, during which the
resistance signals from sensors are acquired by the ADC and
are transferred to the embedded computer or to the hard drive
of a generic PC through the USB/serial link. The step C is
equivalent to step A. Steps B and C are iterated for a total of
5 times.

C. Experimental Results
For all the analytes, an appreciable decrease in the electrical

sensor resistance was registered during step B. The sensor
array produced response patterns to the different analytes
evaluable for the classification. As an example, Fig. 12
shows the sensor’s normalized signals versus discrete-time
for ethanol. The piezoelectric pump fills, with a low flow
of 20mLmin−1, the system’s dead volume equal to about
35 cm3. This results in the high response times of Fig. 12. The
sensors’ ID codes are reported in TABLE IV. The extracted
features from curves are the 8-tuples and consist in a complete
set of sensors’ normalized responses. They are obtained with a
sampling rate of 2.5Hz. The normalization is obtained through
dividing the resistance signal, RS , by the initial baseline
resistance during pre-conditioning in air, Rair. As extracted
features from the normalized responses, the 5 negative peaks
of the 8 sensors are taken for the 12 chemical standards.
These 8-tuples become the input observations for the training
procedure. Fig. 13 summarizes the obtained 60 observations
with a radar plot.
To speed up the measurements, the recovery cycles have been
stopped before reaching the initial baseline. This premature
stop does not represent an issue for the sensing capability
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Fig. 12. Sensors’ normalized responses versus time under multiple
ethanol exposure and recovering in air. The sensors’ ID codes are
reported in TABLE IV.

of the array since, as it can be noted from Fig. 13, the
observations are repeatable over successive exposure cycles.
Moreover, as it can be verified from the high classification
scores showed below, this measurement approach, that doesn’t
wait the full recovery of the signal, does not cause any
significant information loss in sensors’ responses. The ex-
tracted observations were used as training dataset of various
machine learning (ML) classification models. In this respect,
the Classification Leaner app, found in MATLAB, was adopted
to explore the performances of classifiers and the results
are reported in TABLE V. A 10-fold cross-validation was
used to protect the models from overfitting and the following
families of classification models were successfully tested:
discriminant analysis (linear and quadratic), SVM (linear,
quadratic, cubic, fine Gaussian, medium Gaussian, and coarse
Gaussian), nearest neighbor classifiers (fine, medium, coarse,

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3343762

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

1-Butanol

0.1
0.5
0.9
1.3S1 S2

S3

S4
S5

S6

S7

S8

Heptanal

0.1
0.5
0.9
1.3

2-Butan.

0.1
0.5
0.9
1.3

3-Pentanone

0.1
0.5
0.9
1.3

Acetone

0.1
0.5
0.9
1.3

Hexanal

0.1
0.5
0.9
1.3

Hexane

0.1
0.5
0.9
1.3

Isoprene

0.1
0.5
0.9
1.3

Isopropanol

0.1
0.5
0.9
1.3

Pentanal

0.1
0.5
0.9
1.3

Pentane

0.1
0.5
0.9
1.3

Ethanol

0.1
0.5
0.9
1.3

Fig. 13. Radar plot of the normalized responses of sensors for the
tested chemical standard. The sensors’ ID codes are reported only for
1-Butanol and they are specified in TABLE IV.

TABLE V
ACCURACY REPORTS FROM THE TRAINING OF VARIOUS CLASSIFIERS.

Model Accuracy
Linear Discriminant 100 %
Subspace Discriminant 93.3 %
Fine KNN 91.7 %
Medium Gaussian SVM 90 %
Linear SVM 86.7 %
Quadratic SVM 85 %
Bagged Trees 85 %
Subspace KNN 85 %
Cubic SVM 83.3 %
Weighted KNN 81.7 %
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Fig. 14. Plot of the first 2 linear discriminants from single substances.

cosine, cubic, weighted), and ensemble classifiers (boosted
trees, bagged trees, subspace discriminant, subspace KNN, and
RUSboosted trees). After the training, the accuracy is retrieved
for each model. It is calculated on all observations, considering
each observation when it was in a held-out fold of the cross-
validation procedure. A perfect accuracy of 100% is achieved
by the linear discriminant classifier. In this case, all the ex-
tracted features from resistance signals are correctly classified
into the respective chemical standards. This result is confirmed
by the diagram in Fig. 14, showing a good separation of
classes while considering the first 2 linear discriminants. The
classification capability of the system was further verified by

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Linear Discriminant 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

L
in

e
a
r 

D
is

c
ri
m

in
a
n
t 
2

2-Butanone

2-Butanone, Hexane

Acetone, 2-Butanone

Acetone, 2-Butanone, Hexane

Acetone

Acetone, Hexane

Hexane

Fig. 15. Plot of the first 2 linear discriminants from mixtures.

testing the binary and ternary gas mixtures already introduced
in Sec. III-A. As already done with single chemical standards,
5 measurements (8-tuples) were taken for the 4 mixtures. In
addition to these, measurements from single substances (i.e.,
2-butanone, acetone, and hexane) in mixtures were added to
the dataset. Even in this case, a 100% accuracy was achieved
with linear discriminant model. This is confirmed by Fig. 15
which shows the clear separation between classes in the linear
discriminants plot.

The main limitation of the study is the lack of a vali-
dation step on real human biosamples, that will be a next
milestone within pilot studies on sample population approved
by Ethical Commitee. In this work the system’s design and
implementation is emphasized describing the architecture, the
hardware, and technological features not usually discussed in
the literature or by manufacturers. Therefore, the functionality
of the device is tested here with single standards and simple
VOC mixtures as it is commonly done in testing procedure
as a first step. Indeed, the considered mixtures only are
simplified representations of real VOCs from biosamples.
As reported in a previous study [23], these are typically
complex mixtures with a rich variety of involved VOCs.
Longer exposure times may be considered in real applications
to avoid any information loss from sensors’ resistive responses.
However, experimental results obtained by classifying single
chemical standards and simple mixtures are promising, es-
pecially considering that the analyzed solutions are aqueous.
This is close to the real case of exhaled breath that has a
high moisture content close to saturation; other more complex
human biological liquid matrices (such as blood, urine, saliva,
etc.) are also water-based. As shown earlier, classification
scores from the developed device are high despite the high
presence of water vapour in the headspace of the analysed
standard samples. Thus, the presented experimental results
give a proof on the system’s efficacy to the global fingerprint
analysis and classification of some VOCs which are commonly
found in human volatilome.
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IV. CONCLUSION

In this paper, an e-nose devoted to the human volatilome
fingerprinting of different matrices is presented. The device,
code-named SPYROX, adopts an array of 8 commercial MOX
gas sensors and it is capable of dealing with breath and
headspace analysis of human biosamples. The aim is to
implement a low-cost device with accurate data from sensors,
eventually leading to high classification scores of single gas
species and mixtures in output. The goal is reached by ad-
vancing the concept of voltage dividers’ range shifting, whose
aim is the optimization of the read-out sensitivity over the
full dynamic range. Moreover, theoretical derivations proved
that a 12-bit integrated ADC is enough for an accurate signal
conversion. Other advantages of the proposed electronic nose
regard the large variety of connectivity and power options,
a compact size for portable and standalone operation, and
a modular design for an easy maintenance and flexibility.
The functionality of the device was proved by a classifica-
tion test of chemical standards and VOC mixtures as well.
In the first case, 12 chemical standards of real interest in
human volatilome analysis were tested. Afterwards, 3 binary
mixtures and 1 ternary one were prepared to further test the
classification capabilities towards more plausible samples. In
both cases, an accuracy of 100% was obtained using a linear
discriminant model. This result proves the system’s efficacy
to the fingerprint analysis of human volatilome.
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the Università del Salento. Since November 2019 he serves as a Pro-
Vice Chancellor for Administration and Finance.

Stefano D’Amico (Senior Member, IEEE) was
born in Lecce, Italy, in 1976. He received the
Laurea degree in Electronic Engineering from
the Politecnico di Bari, Bari, Italy, in 2001.
He received the Ph.D. degree in Microelec-
tronics from Istituto Superiore Universitario per
la Formazione Interdisciplinare, (ISUFI), Lecce,
Italy. From 2007 he served the Università del
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