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Abstract. We study elliptic and parabolic problems governed by the singular elliptic operators

yα

(
Dyy + c

y
Dy

)
− V (y), α ∈ R

in R+, where V is a potential having nonnegative real part.

1. Introduction

In this paper, we study solvability and regularity of elliptic and parabolic problems
associated with the degenerate operators

L = yα

(
Dyy + c

y
Dy

)
− V and Dt − L

in the half-line R+.
Here, c, α are real numbers and V ∈ L1

loc

(
R

+, yc−α
)
is a potential having nonneg-

ative real part. The operator B = Dyy + c
y Dy is a Bessel operator and satisfies the

scaling property

I−1
s B Is = s2B, Isu(y) = u(sy).

We study L in the weighted spaces L p
m := L p

(
R

+, ymdy
)
, m ∈ R, and we char-

acterize all m such that L generates a C0-semigroup. When V ≥ 0, we also prove
that the generated semigroup is analytic and we show that it has maximal regularity,
which means that both Dtv and Lv have the same regularity as (Dt − L)v. In the case
V (y) = yα , we finally characterize the domain of L .
We observe that the results already available for B, see [13, Section 3] and also

[8–11,15] for the N -d version of B, imply the corresponding ones for yαB in L p
m

by a change of variables, as described in Sect. 3. The change of variables varies the
underlying measure and explains why we need the full scale of L p

m spaces.
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More effort is needed to add the potential term. We consider first B − V in L2

(R+; ycdy). We use form methods to construct an analytic semigroup, and we prove
kernel bounds for complex times via Davies–Gaffney estimates and provide a core.
Then, with the methods of Sect. 3, we deduce similar results for yαB − V in L2(R+;
yc−αdy). Next we prove that the semigroup can be extended to L p

m under sharp con-
ditions on p and m. Finally, we prove that for every ε > 0 the family of operators

{
ez(y

αB−V ) : z ∈ �π
2 −ε, 0 ≤ V ∈ L1

loc

(
R

+, yc−α
)}

is R-bounded in L p
m , which implies the maximal regularity of the semigroup when

V ≥ 0.
As a motivation for our investigation, we point out that, in the special case V (y) =

yα , all the results above play a crucial role in [14] in the investigation of the degenerate
operators

L = yα1�x + yα2

(
Dyy + c

y
Dy − b

y2

)
.

Let us suppose, for simplicity, b = 0, α1 = α2 := α. Assuming that yα(�xu +
Byu) = f and taking the Fourier transform Fu or û with respect to x , we obtain
yα|ξ |2û(ξ, y) = −yα|ξ |2(yα|ξ |2 − yαBy)

−1 f̂ (ξ, y). Therefore,

yα�xL−1 = F−1
(
yα|ξ |2(yα|ξ |2 − yαBy)

−1)
)
F

and the boundedness of yα�xL−1 is equivalent to that of the multiplier

ξ ∈ R
N → yα|ξ |2(yα|ξ |2 − yαBy)−1.

For this reason, we prove in Sect. 8 that certain multipliers associated with yαB −
V satisfy a vector-valued Mikhlin theorem. These results rely on square function
estimates which we deduce from kernel bounds and the following equality, which
allows to treat λ or |ξ |2 as spectral parameters simultaneously

(
λ − yαB + |ξ |2yα

)−1 =
(

|ξ |2 − B + λ

yα

)−1 1

yα
.

We restrict ourselves to α < 2 and consider yαB withNeumann boundary condition
at 0, namely limy→0 ycDyu(y) = 0. This is equivalent to require yα−1Dyu ∈ L p

m ,
see [12, Proposition 5.11]. The restriction α < 2 is not really essential since one can
deduce from it the case α > 2, which requires a boundary condition at ∞, using the
change of variables described in Sect. 3.

Besides this, our strategy can be easily adapted to different boundary conditions

and to more general operators yα
(
Dyy + c

y Dy − b
y2

)
−V . We do this (in much more

generality) in [14, Sections 7, 8].
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The paper is organized as follows. In Sect. 2, we briefly recall the harmonic analysis
background needed in the paper, such as square function estimates, R-boundedness
and a vector-valued multiplier theorem.
In Sect. 3, we exploit an elementary change of variables, in a functional analytic

setting, to reduce our operators to the simpler case where α = 0.
Section 4 is devoted to the study of the Bessel operator yαB. In Sects. 5, 6 and 7, we

perturb the Bessel operator by adding the potential V and we prove real and complex
kernel estimates, generation results and maximal regularity for yαB − V . Finally in
Sect. 8, we treat the case V (y) = yα and characterize the domain of yαB − yα .

Notation. For m ∈ R, we consider the measure ymdy in R+ and we write L p
m for

L p(R+, ymdy). Similarly, Wk,p
m = {u ∈ L p

m : ∂αu ∈ L p
m |α| ≤ k}. When we write

V ∈ Lq
loc(R

+, ym dy), we mean that V ∈ Lq([0, b], ym dy) for every b < ∞.
We use C

+ = {λ ∈ C : Reλ > 0}, and for |θ | ≤ π , we denote by �θ the open
sector {λ ∈ C : λ �= 0, |Arg(λ)| < θ}.
Statements and declarations. Data sharing is not applicable to this article as no
datasets were generated or analyzed during the current study.

2. Harmonic analysis and maximal regularity

The study of maximal regularity of parabolic problems of the form ut = Au +
f, u(0) = 0, where A is the generator of an analytic semigroup on a Banach space X ,
consists in proving estimates like

‖ut‖p + ‖Au‖p ≤ ‖ f ‖p

where the L p norm is that of L p([0, T [; X). This can be interpreted as closedness of
Dt − A on the intersection of the respective domains or, equivalently, boundedness of
the operator A(Dt − A)−1 in L p([0, T [; X).
Nowadays this strategy is well established and relies on Mikhlin vector-valued

multiplier theorems. Let us state the relevant definitions and main results we need,
referring the reader to [5,6,17] or [7].

Let S be a subset of B(X), the space of all bounded linear operators on a Banach
space X . S isR-bounded if there is a constant C such that

∥∥∥∥∥
∑
i

εi Si xi

∥∥∥∥∥
L p(�;X)

≤ C

∥∥∥∥∥
∑
i

εi xi

∥∥∥∥∥
L p(�;X)

for every finite sum as above, where (xi ) ⊂ X, (Si ) ⊂ S and εi : � → {−1, 1} are
independent and symmetric random variables on a probability space �. The smallest
constant C for which the above definition holds is the R-bound of S, denoted by
R(S). It is well known that this definition does not depend on 1 ≤ p < ∞ (however,
the constantR(S) does) and thatR-boundedness is equivalent to boundedness when
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X is an Hilbert space. When X is an L p space (with respect to any σ -finite measure),
testing R-boundedness is equivalent to proving square functions estimates, see [7,
Remark 2.9].

Proposition 2.1. Let S ⊂ B(L p(�)), 1 < p < ∞. Then, S isR-bounded if and only
if there is a constant C > 0 such that for every finite family ( fi ) ∈ L p(�), (Si ) ∈ S

∥∥∥∥∥∥
(∑

i

|Si fi |2
) 1

2

∥∥∥∥∥∥
L p(�)

≤ C

∥∥∥∥∥∥
(∑

i

| fi |2
) 1

2

∥∥∥∥∥∥
L p(�)

.

The best constant C for which the above square functions estimates hold satisfies
κ−1C ≤ R(S) ≤ κC for a suitable κ > 0 (depending only on p). The proposition
above R-boundedness follows from domination.

Corollary 2.2. Let S, T ⊂ B(L p(�)), 1 < p < ∞ and assume that T isR bounded
and that for every S ∈ S there exists T ∈ T such that |S f | ≤ |T f | pointwise, for
every f ∈ L p(�). Then, S isR-bounded.

Let (A, D(A)) be a densely defined, sectorial operator in a Banach space X ; this
means that ρ(−A) ⊃ �π−φ for some φ < π and that λ(λ+ A)−1 is bounded in�π−φ .
The infimumof all suchφ is called the spectral angle of A and denoted byφA. Note that
−A generates a strongly continuous analytic semigroup if and only if φA < π/2. The
definition ofR-sectorial operator is similar, substituting boundedness of λ(λ + A)−1

with R-boundedness in �π−φ . As above one denotes by φR
A the infimum of all φ for

which this happens; sinceR-boundedness implies boundedness, we have φA ≤ φR
A .

The R-boundedness of the resolvent characterizes the regularity of the associated
inhomogeneous parabolic problem, as we explain now.
An analytic semigroup (e−t A)t≥0 on a Banach space X with generator −A has

maximal regularity of type Lq (1 < q < ∞) if for each f ∈ Lq([0, T ]; X) the function
t �→ u(t) = ∫ t

0 e
−(t−s)A) f (s) ds belongs to W 1,q([0, T ]; X) ∩ Lq([0, T ]; D(A)).

This means that the mild solution of the evolution equation

u′(t) + Au(t) = f (t), t > 0, u(0) = 0,

is in fact a strong solution and has the best regularity one can expect. It is known
that this property does not depend on 1 < q < ∞ and T > 0. A characterization of
maximal regularity is available in UMD Banach spaces, through the R-boundedness
of the resolvent in a suitable sector ω+�φ , with ω ∈ R and φ > π/2 or, equivalently,
of the scaled semigroup e−(A+ω′)t in a sector around the positive axis. In the case of
L p spaces, it can be restated in the following form, see [7, Theorem 1.11]

Theorem 2.3. Let (e−t A)t≥0 beaboundedanalytic semigroup in L p(�),1 < p < ∞,
with generator −A. Then, T (·) has maximal regularity of type Lq if and only if the
set {λ(λ + A)−1, λ ∈ �π/2+φ} is R- bounded for some φ > 0. In an equivalent way,
if and only if there are constants 0 < φ < π/2, C > 0 such that for every finite
sequence (λi ) ⊂ �π/2+φ , ( fi ) ⊂ L p
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∥∥∥∥∥∥
(∑

i

|λi (λi + A)−1 fi |2
) 1

2

∥∥∥∥∥∥
L p(�)

≤ C

∥∥∥∥∥∥
(∑

i

| fi |2
) 1

2

∥∥∥∥∥∥
L p(�)

or, equivalently, there are constants 0 < φ′ < π/2, C ′ > 0 such that for every finite
sequence (zi ) ⊂ �φ′ , ( fi ) ⊂ L p

∥∥∥∥∥∥
(∑

i

|e−zi A fi |2
) 1

2

∥∥∥∥∥∥
L p(�)

≤ C ′
∥∥∥∥∥∥
(∑

i

| fi |2
) 1

2

∥∥∥∥∥∥
L p(�)

.

Finally, we state a version of the operator-valued Mikhlin multiplier theorem in the
N -dimensional case, see [5, Theorem 3.25] or [7, Theorem 4.6].

Theorem 2.4. Let 1 < p < ∞, M ∈ CN (RN \ {0}; B(L p(�)) be such that the set{
|ξ ||α|Dα

ξ M(ξ) : ξ ∈ R
N \ {0}, |α| ≤ N

}

is R-bounded. Then, the operator TM = F−1MF is bounded in L p(RN , L p(�)),
where F denotes the Fourier transform.

We end this section with the following lemma on radially symmetric multipliers.

Lemma 2.5. Let 1 < p < ∞, m ∈ CN (R+; B(L p(�)) be such that the set{
skm(k)(s) : s ∈ R+, k ≤ N

}

isR-bounded. For a ∈ R, let M(ξ) = m (|ξ |a). Then, M ∈ CN (RN \ {0}; B(L p(�))

and {
|ξ ||α|Dα

ξ M(ξ) : ξ ∈ R
N \ {0}, |α| ≤ N

}

isR-bounded and

R
{
|ξ ||α|Dα

ξ M(ξ) : ξ ∈ R
N \ {0}, |α| ≤ N

}
≤ C(N )R

{
skm(k)(s) : s ∈ R+, k ≤ N

}
.

Proof. Let us first observe that for any multi-index α with 0 < |α| ≤ N one has

Dα
ξ M(ξ) =

|α|∑
i=1

hi,α(ξ)m(i) (|ξ |a) (1)

where hi,α ∈ C∞(RN \{0}) are homogeneous functions of degree ia−|α|. Obviously,
(1) is valid for |α| = 1 since ∇M(ξ) = a m′(|ξ |a)|ξ |a−2ξ and follows by induction,
and the derivatives of hi,α are homogeneous of degree ia − |α| − 1.
The proof of the lemma now follows by Corollary (2.2) since from (1) one has for

f ∈ L p(�)

|ξ ||α||Dα
ξ M(ξ) f | ≤ |ξ ||α|

|α|∑
i=1

|hi,α(ξ)||m(i) (|ξ |a) f | ≤ C
|α|∑
i=1

|ξ |ia |m(i) (|ξ |a) f |.
�
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3. Degenerate operators and similarity transformations

We investigate when the operators

B = Dyy + c

y
Dy, yαB = yα

(
Dyy + c

y
Dy

)

can be transformed one into the other by means of change of variables. Here, α, c are
unrestricted real coefficients.
For β ∈ R, β �= −1 let

Tβ u(y) := |β + 1| 1p u(yβ+1), y ∈ R+. (2)

Observe that

T−1
β = T− β

β+1
.

Proposition 3.1. Let 1 ≤ p ≤ ∞, k, β ∈ R, β �= −1. The following properties hold.

(i) For every m ∈ R, Tβ maps isometrically L p
m̃ onto L p

m where

m̃ = m − β

β + 1
.

(ii) For every u ∈ W 2,1
loc (R+), one has

1. yαTβ u = Tβ (y
α

β+1 u), for any α ∈ R;

2. DyTβ u = Tβ

(
(β + 1)y

β
β+1 Dyu

)
,

Dyy(Tβ u) = Tβ

(
(β + 1)2y

2β
β+1 Dyyu + (β + 1)βy

β−1
β+1 Dyu

)
.

Proof. The proof of (i) follows after observing the Jacobian of y �→ yβ+1 is |1+β|yβ .
Then, we compute

DyTβ u(y) = |β + 1| 1p
(
(β + 1)yβDyu(yβ+1)

)
= Tβ

(
(β + 1)y

β
β+1 Dyu

)

and similarly

DyyTβ u(y) = Tβ

(
(β + 1)2y

2β
β+1 Dyyu + (β + 1)βy

β−1
β+1 Dyu

)
.

�

Proposition 3.2. Let Tβ be the isometry above defined. The following properties hold.

For every u ∈ W 2,1
loc (R+), one has

T−1
β

(
yαB

)
Tβ u =

(
(β + 1)2y

α+2β
β+1 B̃

)
u
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where B̃ is the operator defined as in (1) with parameter c replaced, respectively, by

c̃ = c + β (c + 1 + β)

(β + 1)2
.

Proof. Using Proposition 3.1, we can compute

BTβ u(y)

= Tβ

[
(β + 1)2y

2β
β+1 Dyyu + (β + 1)βy

β−1
β+1 Dyu + c(β + 1)y

β−1
β+1 Dyu − by− 2

β+1 u
]

= Tβ

[
y

2β
β+1

(
(β + 1)2Dyyu + (β + 1) (β + c)

y
Dyu − b

u

y2

)]

= Tβ

(
y

2β
β+1 B̃u

)

which implies

T−1
β

(
yαB

)
Tβ u = y

α+2β
β+1 B̃u.

�

4. The Bessel operator yαBn

In this section, we consider for α < 2, c ∈ R the operator

yαB = yα

(
Dyy + c

y
Dy

)

in the space L p
m under Neumann boundary conditions.

According to Proposition 3.2, for 0 < (m+1)/p < c+1−α, we use the isometry

T− α
2

: L p
m̃ → L p

m T− α
2
u(y) =

∣∣∣1 − α

2

∣∣∣
1
p
u(y1−

α
2 ),

m̃ = m+ α
2

1− α
2
, under which yαB becomes isometrically equivalent to T−1

− α
2

(
yαB

)
T− α

2
=(

1 − α
2

)2
B̃ where B̃ = Dyy + c̃

y Dy , c̃ = c− α
2

1− α
2
and 0 < (m̃ + 1)/p < c̃ + 1.

All the results for yαB in L p
m are then immediate consequence of those of B̃ in

L p
m̃ already proved in [13, Section 3] (see also [9–11,15] for analogous results in the

multi-dimensional case).
If 1 < p < ∞, we define

W 2,p
N (α,m) =

{
u ∈ W 2,p

loc (R+) : u, yαDyyu, y
α
2 Dyu, yα−1Dyu ∈ L p

m

}

and refer to [12] where these spaces are studied in detail in R
N+1+ . The Neumann

boundary condition, denoted by the pedixN , is enclosed in the requirement yα−1Dyu ∈
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L p
m . This last is redundant when (m + 1)/p > 1 − α and equivalent to Dyu(y) → 0

as y → 0, when (m + 1)/p < 1 − α, see [12, Proposition 4.3].
Consequently, we write yαBn or, more pedantically yαBn

m,p if necessary, for the

operator yαB endowed with the domain W 2,p
N (α,m). This time the suffix n reminds

the Neumann boundary condition at y = 0.

Remark 4.1. The restriction α < 2 is not really essential since one can deduce from it
the case α > 2, which requires boundary condition at∞, using the change of variables

described in Sect. 3 or directly from the equality T−1
− α

2

(
yαB

)
T− α

2
= (1 − α

2

)2
B̃ which

is valid for any α �= 2. However, here and in what follows, we keep to it in order to
simplify the exposition.

Theorem 4.2. If 0 < m+1
p < c+1−α, then yαBn endowed with domain W 2,p

N (α,m)

generates a bounded positive analytic semigroup of angle π/2 on L p (R+, ymdy).

Proof. We use the identity T−1
− α

2

(
yαBn

)
T− α

2
= (1 − α

2

)2
B̃n and apply [13, Proposi-

tion 3.3] in L p
m̃ . Note that D(yαBn

m,p) = T− α
2
D(B̃n

m̃,p) which means

u ∈ D(yαBn
m,p) ⇐⇒ v(y) := u(y

2
2−α ) ∈ D(B̃n

m̃,p).

�

Under the hypothesis of Theorem 4.2, the domain of yαBn consists of all functions
in the maximal domain satisfying a Neumann condition at 0, see [12, Proposition 4.6,
4.7], that is

D(yαBn
m,p) =

{
u ∈ W 2,p

loc (R+) : u, yαBu ∈ L p
m and lim

y→0
ycDyu = 0

}
.

(The condition limy→0 ycDyu = 0 can be deleted in the range 0 < m+1
p ≤ c − 1.)

When c ≥ 1, the domain can also be described involving a Dirichlet, rather than
Neumann, boundary condition

D(yαBn
m,p) =

{
u ∈ W 2,p

loc (R+) : u, yαBu ∈ L p
m and lim

y→0
yc−1u = 0

}
, if c > 1;

D(yαBn
m,p) =

{
u ∈ W 2,p

loc (R+) : u, yαBu ∈ L p
m and lim

y→0
u ∈ C

}
, if c = 1.

We close this section by describing a core which does not depend on α,m, p and
on the coefficients of the operator.

Proposition 4.3. If 0 < m+1
p < c + 1 − α, then a core for yαBn is

D = {u ∈ C∞
c ([0,∞)) : u constant in a neighborhood of 0

}
.

Proof. The proof immediately follows by observing that, by [13, Proposition 5.4], D
is a core when α = 0, that is for B̃n

m̃,p, and the isometry T− α
2
leaves invariant D since

α < 2. �
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Remark 4.4. We point out that, by the proof of [13, Proposition 5.4] or by [12, Remark
4.14], it follows that if u ∈ D(yαBn

m,p) has support in [0, b], then there exists a
sequence (un)n∈N ∈ D such that supp un ⊆ [0, b] and un → u in D(yαBn

m,p).

5. The operator Bn − V

We start our investigation by adding a potential 0 ≤ V ∈ L1
loc

(
R

+, yc dy
)
to Bn .

Here, we prove kernel bounds and construct a core.

5.1. Kernel bounds

For c + 1 > 0 and 0 ≤ V ∈ L1
loc

(
R

+, yc dy
)
, we prove upper bounds for the heat

kernel of Bn − V , following the method used in [3, Sections 3, 4].
Setting H1

c = {u ∈ L2
c, u

′ ∈ L2
c}, we recall that from [13, Section 2] the operator

Bn
c,2 is associated with the nonnegative, symmetric and closed form in L2

c

a(u, v) :=
∫ ∞

0
DyuDyv ycdy, D(a) = H1

c .

We consider the perturbed form aV in L2
c defined by

aV (u, v) = a(u, v) + 〈Vu, v〉L2
c

=
∫
R+

(
DyuDyv + Vuv

)
yc dy

D(aV ) = D(a) ∩ L2 (
R

+, V yc dy
)

(3)

and define Bn − V in L2
c as the operator associated with the form aV

D(Bn − V ) = {u ∈ D(aV ) : ∃ f ∈ L2
c such that aV (u, v)

=
∫ ∞

0
f vyc dy for every v ∈ D(aV )},

Bnu − Vu = − f.

The positivity of V implies that the norm induced by the form aV is stronger than the
one induced by a: As an immediate consequence, one deduces that aV is closed. By
standard theory on sesquilinear forms, we have the following result.

Proposition 5.1. If c + 1 > 0, 0 ≤ V ∈ L1
loc

(
R

+, yc dy
)
, then aV is a nonneg-

ative, symmetric and closed form in L2
c . Its associated operator −Bn + V is non-

negative and self-adjoint, and Bn − V generates a contractive analytic semigroup{
ez(B

n−V ) : z ∈ C+
}
in L2

c . Moreover:

(i) The semigroup
(
et (B

n−V )
)
t≥0 is sub-Markovian (i.e., it is positive and L∞-

contractive), and it is dominated by et B
n
, that is

|et (Bn−V ) f | ≤ et B
n | f |, t > 0, f ∈ L2

c .
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(ii)
(
et (B

n−V )
)
t≥0 is a semigroup of integral operators, and its heat kernel pV , taken

with respect to the measure ρcdρ, satisfies

0 ≤ pV (t, y, ρ) ≤ Ct−
1
2 ρ−c

(
ρ

t
1
2

∧ 1

)c

exp

(
−|y − ρ|2

κt

)
.

Proof. The first claim follows from the property of aV . et (B
n−V ) is sub-Markovian

from [16, Corollary 2.17]. The domination property follows from [16, Corollary 2.21].
(ii) is a consequence of [2, Proposition 1.9] since et (B

n−V ) is dominated by the positive
integral operator et B

n
whose kernel satisfies the stated estimate, see [13, Proposition

2.8], where, however, the kernel is written with respect to the Lebesgue measure. �
To extend the above heat kernel estimates to the half-plane C+, we need the fol-

lowing lemma.

Lemma 5.2. Let c + 1 > 0 and for y0, r > 0

Qc(y0, r) :=
∫

[y0,y0+r ]
ycdy.

Then one has

Qc(y0, r) � rc+1
( y0
r

)c ( y0
r

∧ 1
)−c

, r, y0 > 0.

In particular, the function Qc satisfies, for some constants C ≥ 1, the doubling con-
dition

Qc(y0, s)

Qc(y0, r)
≤ C

( s
r

)1∨(c+1)
, ∀y0 > 0, 0 < r < s.

Proof. A scaling argument immediately yields Qc(y0, r) = rc+1Qc
( y0
r , 1

)
, and we

may therefore assume r = 1. The local integrability of yc implies that Qc(y0, 1) is
continuous as a function of y0 and moreover Qc(y0, 1) → ∫

(0,1) y
cdy > 0 as y0 → 0.

Therefore, if y0 ≤ 1, then

Qc(y0, 1) � 1.

On the other hand, if y0 > 1, then y � y0 for any y ∈ (y0, y0 + 1) which implies

Qc(y0, 1) =
∫

(y0,y0+1)
ycdy � yc0 .

The last two inequalities yield Qc(y0, 1) � (y0)c (y0 ∧ 1)−c. The doubling condition
follows from the previous estimates and the fact that for 0 < r < s one has

Qc(y0, s)

Qc(y0, r)
≤ C

⎧⎪⎪⎨
⎪⎪⎩

( s
r

)c+1
, if y0

s ≤ y0
r ≤ 1;

s
r

(
s
y0

)c
, if y0

s ≤ 1 <
y0
r ;

s
r , if 1 ≤ y0

s ≤ y0
r .

(Note that in the range y0
s ≤ 1 <

y0
r one has ( s

y0
)c ≤ 1 if c < 0 and ( s

y0
)c ≤ ( sr )c if

c ≥ 0.) �
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Proposition 5.3. Let c + 1 > 0, 0 ≤ V ∈ L1
loc

(
R

+, yc dy
)
. The semigroup{

ez(B
n−V ) : z ∈ C+

}
consists of integral operators

ez(B
n−V ) f (y) =

∫ ∞

0
pV (z, y, ρ) f (ρ) ρcdρ, f ∈ L2

c, y > 0.

Furthermore for every ε > 0, there exist kε,Cε > 0 such that, for every z ∈ �π
2 −ε

and y, ρ > 0,

|pV (z, x, y)| ≤ Cε |z|− 1
2 ρ−c

(
ρ

|z| 12
∧ 1

)c

exp

(
−|y − ρ|2

κε |z|
)

.

Proof. Using the previous lemma, we rewrite Proposition 5.1 (ii) as

0 ≤ pV (t, y, ρ) ≤ C
1

Qc(ρ,
√
t)

exp

(
−|y − ρ|2

κt

)
.

Furthermore by [4, Theorem 3.3], et (B
n−V ) satisfies the Davies–Gaffney estimates

|〈et (Bn−V ) f1, f2〉| ≤ exp

(
−r2

4t

)
‖ f1‖L2

c
‖ f2‖L2

c

for all t > 0, U1, U2 open subsets of (0,+∞), r := d(U1,U2) = min{|x − y| : x ∈
U1, y ∈ U2} and fi in L2(Ui , ycdy). By [4, Corollary 4.4] and Lemma 5.2, we then
obtain for z ∈ �π

2 −ε and y, ρ > 0

|pV (z, y, ρ)| ≤ Cε

1(
Qc(y,

√|z|) 12 (Qc(ρ,
√|z|) 12 exp

(
−|y − ρ|2

κε |z|
)

≤ C ′
ε |z|

c+1
2

(
y√|z|
)− c

2
(
1 ∧ y√|z|

) c
2

(
ρ√|z|
)− c

2
(
1 ∧ ρ√|z|

) c
2

exp

(
−|y − ρ|2

κε |z|
)

.

This is an equivalent form (after modifying the constant in the exponential) of the
estimate in the statement, by [13, Lemma 10.2] with γ1 = γ2 = − c

2 . �

Remark 5.4. We remark that in [4], the authors work in an abstract metric measure
space (M, d, μ) and assume that the heat kernel p associated with a semigroup e−zL ,
where L is a nonnegative self-adjoint operator on L2(M, dμ), is continuous with
respect to the space variables. In such a case, in fact,

sup
x∈U1,y∈U2

|p(z, x, y)| = sup{
∫
M
e−zL f1 f2 dμ, ‖ f1‖L1(U1,dμ) = ‖ f2‖L1(U2,dμ) = 1}.
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In our setting, the continuity assumption on p can be avoided since the proofs of
[4, Theorem 4.1, Corollary 4.4] hold only assuming that for a.e. x, y ∈ M

p(z, x, y) = lim
s→0

∫
M
e−zL f1 f2 dμ = lim

s→0

1

μ(B(x, s)μ(B(y, s)∫
B(x,s)×B(y,s)

p(z, x̄, ȳ), dμ(x̄)dμ(ȳ),

where f1 = χB(x,s)
μ(B(x,s)) , f2 = χB(y,s)

μ(B(y,s)) . This holds, outside a set of zero measure, when
the measure μ is doubling, by the Lebesgue differentiation theorem.

5.2. A core for Bn − V

We prove that under mild hypotheses the set

D = {u ∈ C∞
c ([0,∞)) : u constant in a neighborhood of 0

}

is a core for Bn − V in L2
c . Note that this is true when V = 0, by Proposition 4.3.

We need some elementary lemmas. Unless explicitly stated, we only assume that
0 ≤ V ∈ L1

loc

(
R

+, yc dy
)
.

Lemma 5.5. Assume that 0 ≤ V ∈ L2
loc(R+, yc dy). Then, D(aV ) = H1

c ∩ L2(
R

+, V yc dy
)
is dense in H1

c .

Proof. By Proposition 4.3, D is dense in D(Bn) with respect to the graph norm.
Moreover, since V ∈ L2

c locally, D ⊂ D(aV ). The claim follows from the density of
D(Bn) in H1

c . �

Lemma 5.6. Let u ∈ H1
c such that V u ∈ L2

c . Then, u ∈ D(Bn) if and only if
u ∈ D(Bn − V ). Moreover,

(Bn − V )u = Bu − Vu.

Proof. Let u ∈ D(Bn). Then, u ∈ D(a) and there exists f ∈ L2
c such that

a(u, v) =
∫ ∞

0
DyuDyvy

c dy =
∫ ∞

0
f vyc dy

for every v ∈ H1
c . Setting g = f + Vu ∈ L2

c , we have

aV (u, v) =
∫ ∞

0
(DyuDyv + Vuv)yc dy =

∫ ∞

0
( f + Vu)vyc dy

for every v ∈ H1
c and, in particular, for every v ∈ D(aV ) ⊆ H1

c . Therefore u ∈
D(Bn − V ). Conversely, if u ∈ D(Bn − V ), then u ∈ D(aV ) and there exists g ∈ L2

c
such that

aV (u, v) =
∫ ∞

0
(DyuDyv + Vuv)yc dy =

∫ ∞

0
gvyc dy
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for every v ∈ D(aV ). Setting f = g − Vu ∈ L2
c , we have that

a(u, v) =
∫ ∞

0
f vyc dy

for every v ∈ D(aV ), hence for every v ∈ H1
c , by Lemma 5.5. �

Lemma 5.7. Let u ∈ D(Bn − V ) and η be a smooth function such that η = 1 for
0 ≤ y ≤ 1 and η = 0 for y ≥ 2. Then, ηu ∈ D(Bn − V ) and

(Bn − V )(ηu) = η(Bn − V )u + 2DyηDyu + uDyyη + cu
Dyη

y
.

Proof. Let u ∈ D(Bn − V ), then ηu ∈ D(aV ) and, setting f = (Bn − V )u,

aV (ηu, v) =
∫ ∞

0
(Dy(ηu)Dyv + Vηuv)yc dy

=
∫ ∞

0
(DyuDy(ηv) + Vuηv + uDyηDyv − DyuDyηv)yc dy

= −
∫ ∞

0
η f vyc dy −

∫ ∞

0
DyuDyηvyc dy +

∫ ∞

0
uDyηDyvy

c dy

= −
∫ ∞

0
η f vyc dy −

∫ ∞

0
DyuDyηvyc dy −

∫ ∞

0
vDy(uDyηy

c) dy

= −
∫ ∞

0
η f vyc dy − 2

∫ ∞

0
DyuDyηvyc dy

−
∫ ∞

0
vuDyyηy

c dy −
∫ ∞

0

cu

y
vDyηy

c dy

for every v ∈ D(aV ). �

Lemma 5.8. Let u ∈ D(Bn−V ). Then, there exists (uk) ⊆ D(Bn−V )with compact
support such that (uk) → u in D(Bn − V ).

Proof. Let η be a smooth function such that η = 1 for 0 ≤ y ≤ 1 and η = 0 for
y ≥ 2. Setting ηk(y) = η

( y
k

)
, by Lemma 5.7, uk = ηku ∈ D(Bn − V ) and

(Bn − V )(ηku) = ηk(B
n − V )u + 2Dyηk Dyu + uDyyηk + cu

y
Dyηk .

Then, uk → u, ηk(Bn − V )u → (Bn − V )u in L2
c by dominated convergence and,

since Dyηk = 0 in [0, 1],
∣∣∣∣Dyηk Dyu + uDyyηk + cu

y
Dyηk

∣∣∣∣ ≤ C

( |u|
k

+ |u|
k2

+ |Dyu|
k

)
χ[k,∞[ → 0.

�
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Lemma 5.7 shows that functions with compact support are a core for Bn − V . To
show that D is a core, we need more information on the behavior near y = 0 of
functions in the domain of Bn − V .

We start by recalling some well-known facts about the modified Bessel functions
Iν and Kν which constitute a basis of solutions of the modified Bessel equation

z2
d2v

dz2
+ z

dv

dz
− (z2 + ν2)v = 0, Re z > 0.

We recall that for Re z > 0 one has

Iν(z) =
( z
2

)ν
∞∑

m=0

1

m! �(ν + 1 + m)

( z
2

)2m
, Kν(z) = π

2

I−ν(z) − Iν(z)

sin πν
,

where limiting values are taken for the definition of Kν when ν is an integer. The basic
properties of these functions we need are collected in the following lemma, see, e.g.,
[1, Sections 9.6 and 9.7].

Lemma 5.9. For ν > −1, Iν is increasing and Kν is decreasing (when restricted to the
positive real half-line). Moreover, they satisfy the following properties if z ∈ �π/2−ε.

(i) Iν(z) �= 0 for every Re z > 0.
(ii) Iν(z) ≈ 1

�(ν+1)

( z
2

)ν
, as |z| → 0, Iν(z) ≈ ez√

2π z
(1+O(|z|−1), as |z| →

∞.

(iii) If ν �= 0, Kν(z) ≈ ν
|ν|

1
2�(|ν|) ( z2 )−|ν|

, K0(z) ≈ − log z, as |z| → 0

Kν(z) ≈
√

π
2z e

−z, as |z| → ∞.

(iv) I ′
ν(z) = Iν+1(z) + ν

z Iν(z), K ′
ν(z) = −Kν+1(z) + ν

z Kν(z), for every Re z > 0.

Note that

|Iν(z)| � Cν,ε(1 ∧ |z|)ν+ 1
2
eRez√|z| , z ∈ �π

2 −ε (4)

for suitable constants Cν,ε > 0 which may be different in lower an in the upper
estimate.
The following estimates of the resolvent operator of Bn − V are a consequence of

the domination property stated in Proposition 5.1.

Proposition 5.10. Let c + 1 > 0 and λ > 0. Then, for every f ∈ L2
c ,

(λ − Bn + V )−1 f =
∫ ∞

0
G(λ, y, ρ) f (ρ)ρcdρ

with

0 ≤ G(λ, y, ρ) ≤ Gn(λ, y, ρ)
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where

Gn(λ, y, ρ) :=
⎧⎨
⎩
y

1−c
2 ρ

1−c
2 I c−1

2
(
√

λ y)K |1−c|
2

(
√

λ ρ) y ≤ ρ

[1.5ex]y 1−c
2 ρ

1−c
2 I c−1

2
(
√

λ ρ)K |1−c|
2

(
√

λ y) y ≥ ρ,
(5)

is the integral kernel (taken with respect to the measure ρcdρ) of the operator (λ −
Bn)−1.

Proof. Writing (λ − Bn + V )−1 = ∫∞
0 e−λt et (B

n−V )dt and using property (i) of
Proposition 5.1, we get that

|(λ − Bn + V )−1 f | ≤ (λ − Bn)−1| f |, λ > 0, f ∈ L2
c .

This yields the domination G(λ, y, ρ) ≤ Gn(λ, y, ρ). (The existence of the ker-
nel follows by [2, Proposition 1.9] as in Proposition 5.1.) Formula (5) is proved in
[13, Proposition 2.4]. �

We now prove local pointwise estimates for functions in the domain of Bn − V .

Proposition 5.11. Let c + 1 > 0. Then, there exists C > 0, independent of V , such
that for every u ∈ D(Bn − V ) and 0 < y < 1

(i) if −1 < c < 3

|u(y)| ≤ C
(
‖u‖L2

c
+ ‖(B − V )u‖L2

c

)
,

(ii) if c = 3

|u(y)| ≤ C
(
‖u‖L2

c
+ ‖(B − V )u‖L2

c

)
| log y| 12 ,

(iii) if c > 3

|u(y)| ≤ C
(
‖u‖L2

c
+ ‖(B − V )u‖L2

c

)
y

3−c
2 .

Proof. Let u ∈ D(Bn−V ) and f = u−(Bn−V )u ∈ L2
c so that u = (I−Bn+V )−1 f .

Let us distinguish between the following cases and always take 0 < y < 1.

(i) If −1 < c < 1, Lemma 5.9 implies that for y ≤ 1

G(1, y, ρ) �
{
1, ρ < 1,

ρ− c
2 e−ρ, 1 < ρ.

Then, one has

|u(y)| ≤
∫ ∞

0
G(1, y, ρ)| f (ρ)|ρcdρ ≤ C

(∫ 1

0
| f (ρ)|ρcdρ +

∫ ∞

1
ρ− c

2 e−ρ | f (ρ)| ρcdρ

)

≤ C
(
‖ f ‖L2

c ((0,1))
+ ‖ρ− c

2 e−ρ‖L2
c ((1,∞))‖ f ‖L2

c ((1,∞))

)
≤ C‖ f ‖L2

c
.
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(ii) If c = 1, Lemma 5.9 gives for y ≤ 1

G(1, y, ρ) �

⎧⎪⎪⎨
⎪⎪⎩

| log y| ≤ | log ρ|, ρ < y < 1,

| log ρ|, y < ρ < 1,

ρ− 1
2 e−ρ, 1 < ρ.

Then, analogously

|u(y)| ≤ C

(∫ 1

0
| log ρ|| f (ρ)|ρdρ +

∫ ∞

1
ρ

1
2 e−ρ | f (ρ)|dρ

)

≤ C
(
‖ log ρ‖L2

c ((0,1))
‖ f ‖L2

c ((0,1))
+ ‖ρ− 1

2 e−ρ‖L2
c ((1,∞))‖ f ‖L2

c ((1,∞))

)
≤ C‖ f ‖L2

c
.

(iii) Let now 1 < c. Then, Lemma 5.9 implies that for y ≤ 1

G(1, y, ρ) �

⎧⎪⎪⎨
⎪⎪⎩
y1−c ≤ ρ1−c, ρ < y < 1,

ρ1−c, y < ρ < 1,

ρ− c
2 e−ρ, 1 < ρ.

If c < 3, one has

|u(y)| ≤ C

(∫ 1

0
ρ1−c| f (ρ)|ρcdρ +

∫ ∞

1
ρ− c

2 e−ρ | f (ρ)|ρcdρ

)

≤ C
(
‖ρ1−c‖L2

c ((0,1))
‖ f ‖L2

c ((0,1))
+ ‖ρ− c

2 e−ρ‖L2
c ((1,∞))‖ f ‖L2

c ((1,∞))

)
≤ C‖ f ‖L2

c
.

If c = 3, then we get

|u(y)| ≤ C

(
y−2

∫ y

0
| f (ρ)|ρ3dρ +

∫ 1

y
ρ−2| f (ρ)|ρ3dρ +

∫ ∞

1
ρ− 3

2 e−ρ | f (ρ)|ρ3dρ

)

≤ C‖ f ‖L2
c

⎛
⎝y−2

(∫ y

0
ρ3dρ

) 1
2 +

(∫ 1

y
ρ−4ρ3dρ

) 1
2

+ ‖ρ− 3
2 e−ρ‖L2

c ((1,∞))

⎞
⎠

≤ C‖ f ‖L2
c

(
1 + | log y| 12

)

and finally if c > 3

|u(y)| ≤ C

(
y1−c

∫ y

0
| f (ρ)|ρcdρ +

∫ 1

y
ρ1−c| f (ρ)|ρcdρ +

∫ ∞

1
ρ− c

2 e−ρ | f (ρ)|ρcdρ

)

≤ C‖ f ‖L2
c

⎛
⎝y1−c

(∫ y

0
ρcdρ

) 1
2 +

(∫ 1

y
ρ2−2cρcdρ

) 1
2

+ ‖ρ− c
2 e−ρ‖L2

c ((1,∞))

⎞
⎠

≤ C‖ f ‖L2
c
y

3−c
2 .

�
We can now show that, under stronger assumptions, the potential term V can be

seen as a perturbation of Bn near 0, that is Vu ∈ L2
c for every u ∈ D(Bn) having

compact support. In particular, we prove that D is a core for Bn − V .
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Proposition 5.12. Let c + 1 > 0 and assume that

(i) c < 3 and V ∈ L2
loc

(
R

+, ycdy
)
or

(ii) c = 3 and V | log y| 12 ∈ L2
loc

(
R

+, ycdy
)
or

(iii) c > 3 and V y
3−c
2 ∈ L2

loc

(
R

+, ycdy
)
.

If Cr := {u ∈ L2
c : supp u ⊆ [0, r ]}, then D(Bn − V ) ∩ Cr = D(Bn) ∩ Cr with

equivalence of norms

‖u‖D(Bn−V ) � ‖u‖D(Bn), ∀u ∈ D(Bn) ∩ Cr .

Finally,

D = {u ∈ C∞
c ([0,∞)) : u constant in a neighborhood of 0

}

is a core for Bn − V .

Proof. Let u ∈ Cr . Then, the hypotheses on V and Proposition 5.11 imply that Vu ∈
L2
c and ‖Vu‖L2

c
≤ C‖u − (B − V )u‖L2

c
. Then, by Lemma 5.6 u ∈ D(Bn − V ) if and

only if u ∈ D(Bn). This shows the equality D(Bn − V ) ∩ Cr = D(Bn) ∩ Cr . Using
Proposition 5.11 again, we also have ‖Vu‖L2

c
≤ C1‖u− Bu‖L2

c
for any u ∈ D(Bn)∩

Cr , which proves the equivalence of the graph norms. Finally, let u ∈ D(Bn −V ). We
have to prove that u can be approximated in the graph norm with functions belonging
toD. Using Lemma 5.8, wemay suppose, without any loss of generality, that suppu ⊆
(0, r). Then, by Proposition 4.3, there exist (un) ⊂ D such that un → u in the graph
norm ‖ · ‖D(Bn). We may also assume, after multiplying by a suitable cutoff function,
that suppun ⊆ (0, 2r) for every n. Then, the previous point implies that Vun → Vu
in L2

c , too. �

6. The operator yαBn − V in L2
c−α

We consider now for c ∈ R, α < 2, and 0 ≤ V ∈ L1
loc

(
R

+, yc−α dy
)
the operator

yαBn − V = yα

(
Dyy + c

y
Dy

)
− V

in the space L2
c−α . As in Sect. 4, we use the isometry T− α

2
u(y) = ∣∣1 − α

2

∣∣ 1p u(y1− α
2 ),

T− α
2

: L2
c̃ → L2

c−α, c̃ = c − α
2

1 − α
2

,

under which yαB − V becomes similar to

T−1
− α

2

(
yαB − V

)
T− α

2
=
(
1 − α

2

)2 (
B̃ − Ṽ

)

where B̃ = Dyy + c̃
y Dy and Ṽ (y) = (1 − α

2 )−2V
(
y

2
2−α

)
∈ L1

loc

(
R

+, yc̃ dy
)
.
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Defining

D(yαBn − V ) := T− α
2

(
D(B̃n − Ṽ )

)
,

one obtains that when c > −1 + α, yαBn − V generates a contractive analytic
semigroup

{
ez(y

αBn−V ) : z ∈ C+
}
in L2

c−α which satisfies

ez(y
αB−V ) = T− α

2

(
e
z(1− α

2 )
2
(
B̃−Ṽ

))
T−1

− α
2
. (6)

We state the properties obtained so far, together with a density result which is a
restating of Proposition 5.12 under the isometry T− α

2
.

Proposition 6.1. Let c+1−α > 0 and 0 ≤ V ∈ L1
loc

(
R

+, yc−α
)
. Then, the operator

yαBn − V generates a contractive analytic semigroup in L2
c−α . If, in addition,

(i) c < 3 − α and V ∈ L2
loc

(
R

+, yc−α
)
or

(ii) c = 3 − α and V | log y| 12 ∈ L2
loc

(
R

+, yc−α
)
or

(iii) c > 3 − α and V y
3−c−α

2 ∈ L2
loc

(
R

+, yc−α
)
,

then

D = {u ∈ C∞
c ([0,∞)) : u constant in a neighborhood of 0

}

is a core for yαBn − V in L2
c−α .

Remark 6.2. If V (y) = yα , then V always satisfies (ii) and (iii) when c ≥ 3 − α.
Instead, if c < 3 − α, we need c + 1 − |α| > 0.

Let aṼ be the form in L2
c̃ , defined in (3), associated with B̃n − Ṽ . In L2

c−α , we
introduce the form aα,V which is the image of aṼ under the isometry T0,− α

2
, that is

aα,V (u, v) := aṼ

(
T−1

− α
2
u, T−1

− α
2
v
)

=
∫
R+

(
yαDyuDyv + Vuv

)
yc−α dy,

D(aα,V ) := T− α
2
D(aṼ ) =

{
u ∈ L2

c−α : u′ ∈ L2
c

}
∩ L2 (

R
+, V yc−α dy

)
. (7)

To keep consistency of notation, we oftenwrite a0,V = aV . By construction, yαBn−V
is the operator associated with the form aα,V in L2

c−α

D(yαBn − V ) = {u ∈ D(aα,V ) : ∃ f ∈ L2
c−α such that

aα,V (u, v) =
∫ ∞

0
f vyc−α dy for every v ∈ D(aα,V )},

yαBnu − Vu = − f.

The next lemma, which follows from the considerations above, will be used later to
relate the resolvents of yαBn − yα and Bn − y−α .
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Lemma 6.3. Let aα,yα and ay−α be the sesquilinear forms associated, respectively,
with the operator yαBn − yα in L2

c−α and Bn − y−α in L2
c . Then,

aα,yα (u, v) =
∫
R+

(
DyuDyv + uv

)
yc dy,

ay−α (u, v) =
∫
R+

(
DyuDyv + y−αuv

)
yc dy.

on the common form domain

D(aα,yα ) = D(ay−α ) =
{
u ∈ L2

c−α ∩ L2
c : u′ ∈ L2

c

}

Note that the above operators act in different Hilbert spaces; in particular, their
domains are different. However, the form domains coincide.

7. The operator yαBn − V in L p
m

Here,we investigate properties of yαB−V ,α < 2, in L p
m when0 < m+1

p < c+1−α.

We introduce the family of integral operators (Sβ
α (t))t>0 on L p

m

Sβ
α (t) f (y) := t−

1
2

∫
R+

(
ρ

t
1

2−α

∧ 1

)−β+ α
2

exp

(
−|y1− α

2 − ρ1− α
2 |2

κt

)
f (ρ)ρ− α

2 dρ

and note that

Sβ
α (t) = T− α

2
◦ Sβ̃

0 (t) ◦ T−1
− α

2
, β̃ = β − α

2

1 − α
2

.

As usual T− α
2
u(y) = ∣∣1 − α

2

∣∣ 1p u(y1− α
2 ) is an isometry from L p

m̃ onto L p
m , m̃ = m+ α

2
1− α

2
.

Here, κ is a positive constant, but we omit the dependence on it. The following result
has been proved for α = 0 in [13].

Lemma 7.1. Let m ∈ R, and let p ∈ (1,∞) such that 0 < m+1
p < 1 − α − β. The

families
(
Sβ
α (t)

)
t≥0

and {�(λ) = ∫∞
0 λe−λt Sβ

α (t) dt, λ > 0} are R-bounded in L p
m.

Proof. Since theR-boundedness is preserved under isometries, from Sβ
α (t) = T− α

2
◦

Sβ̃
0 (t)◦T−1

− α
2
wemay assume thatα = 0. (Note that 0 < m+1

p < −β+1−α is equivalent

to 0 < m̃+1
p < −β̃ + 1.) The first result is then a consequence of [13, Theorem 7.7].

The family

�(λ) =
∫ ∞

0
λe−λt Sβ

α (t) dt, λ > 0

isR-bounded by [7, Corollary 2.14]. �
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We can now prove our main results for the operator yαB − V .

Theorem 7.2. Let 0 ≤ V ∈ L1
loc

(
R

+, yc−α dy
)
. For any p ∈ (1,∞) such that

0 < m+1
p < c + 1 − α, the semigroup ez(y

αBn−V ) initially defined on L2
c−α extends

to a bounded analytic semigroup on L p
m of angle π/2 which consists of integral oper-

ators. Moreover, the generated semigroup has maximal regularity and the following
properties hold.

(i) For every ε > 0, there exist C = C(ε, α) > 0 (independent of V ) such that∣∣∣ez(yαBn−V ) f
∣∣∣ ≤ CS−c

α (|z|)| f |, f ∈ L p
m, | arg z| <

π

2
− ε.

(ii) For every ε > 0, the families of operators{
ez(y

αBn−V ) : z ∈ �π
2 −ε, 0 ≤ V ∈ L1

loc

(
R

+, yc−α
)}

,{
λ
(
λ − yαBn + V

)−1 : λ ∈ �π−ε : 0 ≤ V ∈ L1
loc

(
R

+, yc−α
)}

areR-bounded in L p
m.

Proof. By Proposition 5.3 and (6), (i) holds for any f ∈ L2
c−α . The boundedness

of ez(y
αBn−V ) in L p

m follows from the previous lemma, and (i) extends to L p
m . The

semigroup law is inherited from L2
c−α via a density argument, and we have only to

prove the strong continuity at 0. Using the isometry T− α
2
, we may suppose that α = 0.

Let f, g ∈ C∞
c (0,∞). Then as z → 0, z ∈ �π

2 −ε ,

∫ ∞

0
(ez(B

n−V ) f ) g ymdy =
∫ ∞

0
(ez(B

n−V ) f ) g ym−c ycdy

→
∫ ∞

0
f gym−c ycdy =

∫ ∞

0
f gymdy,

by the strong continuity of ez(B
n−V ) in L2

c . By density and uniform boundedness of

the family (ez(B
n−V ))z∈� π

2 −ε
, this holds for every f ∈ L p

m , g ∈ L p′
m . The semigroup

is then weakly continuous, hence strongly continuous.
TheR-boundedness of ez(y

αBn−V ) follows then by domination fromLemma7.1, see
Corollary 2.2. To prove theR-boundedness of the resolvent family, for λ ∈ �π−ε \{0}
let θ = |argλ|

argλ

(
π
2 − ε

2

)
so that μ := e−iθλ ∈ �π

2 − ε
2
. Then,

∣∣∣λ (λ − yαBn + V
)−1

f
∣∣∣ =

∣∣∣∣μ
(
μ − e−iθ (yαBn − V )

)−1
f

∣∣∣∣
=
∣∣∣∣
∫ ∞

0
μe−μt e−iθ t (yαBn−V ) f dt

∣∣∣∣
≤ C

∫ ∞

0
|μ|e−Reμt S−c

α (t)| f | dt

≤ C
∫ ∞

0
|λ|e−|λ| sin ε

2 t S−c
α (t)| f | dt.
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TheR-boundedness of the second family in (ii) now follows from [7, Corollary 2.14]
and the maximal regularity of the semigroup from Theorem 2.3. �
In our investigation of degenerate Nd problems, see [14], we need also a weaker

version of the result above for potentials having nonnegative real part. We formulate
it in the next proposition.

Proposition 7.3. Let V ∈ L1
loc

(
R

+, yc−α dy
)
be a potential having nonnegative real

part. Then, for any 1 < p < ∞ such that 0 < m+1
p < c+1−α, yαBn −V generates

a C0-semigroup on L p
m. The generated semigroup consists of integral operators, and

the following estimates hold∣∣∣et (yαBn−V ) f
∣∣∣ ≤ ety

αBn | f |, f ∈ L p
m, t ≥ 0

In particular, the families of operators{
et (y

αBn−V ) : t ≥ 0, V ∈ L1
loc

(
R

+, yc−α
)
, Re V ≥ 0

}
,{

λ
(
λ − yαBn + V

)−1 : λ > 0, V ∈ L1
loc

(
R

+, yc−α
)
, Re V ≥ 0

}

areR-bounded in L p
m.

Proof. Using the isometry T0,− α
2
, we may assume that α = 0. Let us treat first the

symmetric case in L2
c . The generation results can be proved as inProposition 5.1 (where

we assumed V ≥ 0). If a is the form associated with Bn , then Bn − V is associated
with aV := a(u, v) + 〈Vu, v〉L2

c
and, by the standard theory on sesquilinear forms,

Bn − V generates a C0-semigroup on L2
c .

The domination properties follow from [16, Theorem 2.21]. Let u, v ∈ D (aV ) =
D(a)∩L2

(
R

+, |V |yc dy) such thatuv̄ ≥ 0. Since et B
n
is positive, onehasRe a(u, v) ≥

a(|u|, |v|). Moreover,

Re aV (u, v) = Re a(u, v) +
∫ ∞

0
Re V uv̄ ycdy ≥ Re a(|u|, |v|)

which by [16, Theorem 2.21] again implies the stated domination of the generated
semigroups. (One easily verifies that D (aV ) is an ideal of D(a) since this last is an
ideal in itself, by the positivity of et B

n
, see [16, Proposition 2.20].) The extrapolation

on L p
m follows as in Theorem 7.2. The domination of the resolvent is a straightforward

consequence of that of the semigroup. The R-boundedness of the semigroup follows
by domination from the R-boundedness of (et B

n
)t≥0 proved in Theorem 7.2. The

R-boundedness of the resolvent follows as in Theorem 7.2. �

8. The operator yαBn − yα

We end the paper by thoroughly investigating the special case V (y) = yα , keeping
α < 2. We prove, in particular, that the domain of yαB−V is D(yαB)∩D(V ), under
slightly more restrictive hypotheses than those of Theorem 7.2.
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As explained in Introduction, this case plays a crucial role in [14] in the investigation
of the degenerate operators

L = yα1�x + yα2

(
Dyy + c

y
Dy − b

y2

)
, α1, α2 ∈ R

in the spaces L p
(
R

N+1+ , ymdxdy
)
. In particular, we prove in Propositions 8.3 and

8.4 that the multipliers

ξ ∈ R
N → Nλ(ξ) = λ(λ − yαBy + yα|ξ |2)−1,

ξ ∈ R
N → Mλ(ξ) = yα|ξ |2(λ − yαBy + yα|ξ |2)−1

satisfy the hypothesis of Theorem 2.4.
We start with the following lemma.

Lemma 8.1. Assume that c + 1 > 0 and c + 1 − α > 0; that is, Bn generates a
C0-semigroup in L2

c and yαBn generates a C0-semigroup in L2
c−α . If λ ∈ C

+ and
μ > 0, then

(
λ − yαBn + μyα

)−1
f =

(
μ − Bn + λ

yα

)−1 ( f

yα

)
, ∀ f ∈ C∞

c ((0,∞)).

Proof. Under the assumptions, yαBn −μyα and Bn −λy−α generate a semigroup on
L2
c−α and L2

c , respectively, see Theorem 7.2. Since Reλ > 0, μ > 0, both resolvents
are well defined but map to different spaces.
Let aα,μyα , aλy−α be the forms associated with yαBn−μyα in L2

c−α and Bn−λy−α

in L2
c

aα,μyα (u, v) =
∫
R+

(
DyuDyv + μuv

)
yc dy, aλy−α (u, v)

=
∫
R+

(
DyuDyv + λy−αuv

)
yc dy.

By Lemma 6.3, they are defined on the common domain

F :=
{
u ∈ L2

c−α ∩ L2
c : u′ ∈ L2

c

}

Given f ∈ C∞
c ((0,∞)), let u :=

(
μ − Bn + λ

yα

)−1 ( f
yα

)
. In order to prove that

the equality u = (λ − yαBn + μyα)−1 f holds, we have to show that u ∈ F and that
for every v ∈ F , u satisfies the weak equality

∫ ∞

0
f vyc−α dy =

∫ ∞

0
λuvyc−α dy + aα,μyα (u, v)

=
∫ ∞

0
(λy−αuv + DyuDyv + μuv)yc dy. (8)
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By construction, u is in the domain of Bn −λy−α which is contained inF and satisfies

∫ ∞

0

f

yα
vyc dy =

∫ ∞

0
μuvyc dy + aα,λy−α (u, v)

=
∫ ∞

0
(μuv + DyuDyv + λy−αuv)yc dy,

which is the same as (8). �

In the next results, we relate the resolvent of yαBn − yα with that of Bn − 1
yα . We

shall assume both the conditions 0 < m+1
p < c + 1− α and −α < m+1

p < c + 1− α

(that is α− < m+1
p < c + 1− α). The first guarantees that yαBn is a generator in L p

m

and the second that Bn is a generator in L p
m+αp.

Corollary 8.2. Assume that α− < m+1
p < c + 1 − α. If λ ∈ C

+ and μ > 0, then

(i) for every f ∈ L p
m

(
λ − yαBn + μyα

)−1
f =

(
μ − Bn + λ

yα

)−1 ( f

yα

)
∈ L p

m+αp ∩ L p
m;

(ii) the operator yα (λ − yαBn + μyα)−1 is bounded in L p
m;

(iii) the operator 1
yα

(
μ − Bn + λ

yα

)−1
is bounded in L p

m+αp.

Proof. Equality (i) is proved inLemma8.1 for any f ∈ C∞
c ((0,∞)). Since (λ − yαBn

+μyα)−1 is bounded form L p
m into itself and

(
μ − Bn + λ

yα

)−1 ( ·
yα

)
is bounded

from L p
m to L p

m+αp, by density, (i) holds for every f ∈ L p
m . Parts (ii), (iii) are conse-

quence of (i).

�

In the next propositions, we prove the boundedness of the multipliers Nλ and Mλ.
We start with Mλ, used in [14] to characterize the domain of L = yα(�x + By).

Proposition 8.3. Assume that α− < m+1
p < c + 1 − α and let for λ ∈ C

+, ξ �= 0

Mλ(ξ) = |ξ |2yα
(
λ − yαBn + |ξ |2yα

)−1 ∈ B(L p
m).

Then, the family
{
|ξ ||β|Dβ

ξ (Mλ)(ξ) : ξ ∈ R
N \ {0}, |β| ≤ N , λ ∈ C

+
}
isR-bounded

in L p
m.

Proof. Let mλ(μ) = μyα (λ − yαBn + μyα)−1, μ > 0.
Using Lemma 2.5, it suffices to show that the family

{
μk Dk

μ(mλ)(μ) : μ > 0, k

≤ N , λ ∈ C
+} isR-bounded in L p

m .
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The map T f = f/yα is an isometry of L p
m onto L p

m+αp and by Corollary 8.2,

mλ(μ) = T−1μ

(
μ − Bn + λ

yα

)−1

T .

The family

{
μk Dk

μ(�λ)(μ) : μ > 0, k ≤ N , λ ∈ C
+} , �λ(μ) = μ

(
μ − Bn + λ

yα

)−1

isR-bounded in L p
m+αp. Indeed,

�λ(μ) =
∫ ∞

0
μe−μt et (B

n− λ
yα ) dt

and
{
et (B

n− λ
yα ) : t ≥ 0, λ ∈ C

+
}
is R-bounded in L p

m+αp, by Theorem 7.3. The

R-boundedness of the derivatives follows either by the resolvent equation or by dif-
ferentiating the last equation under the integral and using [7, Corollary 2.14]. In fact,
if h(μ, t) = μe−μt , then

μk
∫ ∞

0
|Dk

μh(μ, t)|dt ≤ Ck, μ > 0.

�

Next we deal with Nλ which is crucial in [14] for the proof that L = yα(�x + By)

generates an analytic semigroup.

Proposition 8.4. Assume that α− < m+1
p < c + 1 − α and let for λ ∈ C

+, ξ �= 0

Nλ(ξ) = (λ − yαBn + |ξ |2yα)−1 ∈ B
(
L p
m
)
.

Then, the family
{
|ξ ||β|Dβ

ξ (λNλ)(ξ) : ξ ∈ R
N \ {0}, |β| ≤ N , λ ∈ C

+}

isR-bounded in L p
m.

Proof. For μ > 0, let nλ(μ) = (λ − yαBn + μyα)−1. Using Lemma 2.5, we have to
show that the family

{
μk Dk

μ(nλ)(μ) : μ > 0, k ≤ N , λ ∈ C
+} (9)

isR-bounded in L p
m .

Theorem 7.2 with V (y) = μyα and Proposition 8.3 imply that the families

{
λnλ(μ) : μ > 0, λ ∈ C

+} ,
{
μyαnλ(μ) : μ > 0, λ ∈ C

+} (10)
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areR-bounded in L p
m .

We have that nλ(·) ∈ C1
(
R+,B

(
L p
m
))

and

Dμ(nλ(μ)) = −nλ(μ)yαnλ(μ). (11)

Indeed setting A = λ − yαBn
y , V = yα , we have

nλ(μ + h) − nλ(μ)

h
= (A + (μ + h)V )−1 − (A + μV )−1

h

= (A + μV )−1 (A + μV )(A + (μ + h)V )−1 − I

h
= −(A + μV )−1 V (A + (μ + h)V )−1

which tends to −nλ(μ) yα nλ(μ) as h → 0 in the norm of B
(
L p
m
)
since, by Corollary

8.2,

μ �→ V (A + μ)V )−1 = μyα

(
μ − Bn + λ

yα

)−1 1

yα

is continuous from (0,∞) to B
(
L p
m
)
. This shows (11) and then nλ(·) ∈ C∞ (R+,B(

L p
m
))

and

Dk
μ(nλ(μ)) = aknλ(μ)

(
yαnλ(μ)

)k
, a1 = −1, ak+1 = −(k + 1)ak . (12)

Formula (12) follows by induction after observing that since yαnλ(μ) and its derivative
Dμ (yαnλ) = − (yα nλ(μ))2 commute, then

Dμ

(
yαnλ(μ)

)k = kDμ

(
yαnλ(μ)

) (
yαnλ(μ)

)k−1 = −k
(
yαnλ(μ)

)k+1
.

TheR-boundedness of the family (9) then follows from theR-boundedness of the
families (10) since

μk Dk
μ(λnλ(μ)) = akλnλ(μ)

(
μyαnλ(μ)

)k+1
.

�

In order to characterize the domain of yαBn − yα , we denote by

D(yα) = {u ∈ L p
m : yαu ∈ L p

m
}

the domain of the potential V = yα in L p
m . Recalling that Theorem 4.2 assures that

D(yαBn) = W 2,p
N (α,m), we consider, for 0 < m+1

p < c + 1 − α, the Banach space

W 2,p
N (α,m) ∩ D(yα) =

{
u ∈ W 2,p

loc (R+) : u, yαu, yαDyyu, y
α
2 Dyu, yα−1Dyu ∈ L p

m

}

endowed with norm ‖yαBu‖L p
m

+ ‖yαu‖L p
m

+ ‖u‖L p
m
.
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Theorem 8.5. Let α < 2, μ > 0, c ∈ R. Then, for any 1 < p < ∞ such that
α− < m+1

p < c + 1 − α the operator L = yαBn − μyα with domain W 2,p
N (α,m) ∩

D(yα) generates a bounded analytic semigroup in L p
m which has maximal regularity.

Moreover,

D = {u ∈ C∞
c ([0,∞)) : u constant in a neighborhood of 0

}

is a core for yαBn − μyα .

Proof. The generation properties as well as the maximal regularity follow from The-
orem 7.2. Without any loss of generality, we may assume that μ = 1. We prove
preliminarily that D is dense in W 2,p

N (α,m) ∩ D(yα) = D(yαBn) ∩ D(yα). Let

u ∈ W 2,p
N (α,m) ∩ D(yα); up to using a standard cutoff argument we may suppose

that supp u ⊆ [0, b] for some b > 0. Using Remark 4.4, let (un)n∈N ⊆ D such that
supp un ⊆ [0, b] and un → u in W 2,p

N (α,m). Then by [12, Proposition 3.2 (ii)]

‖yα(un − u)‖L p
m

≤ C‖yα+1(Dyun − Dyu)‖L p
m

≤ Cb2‖yα−1Dy(un − u)‖L p
m

which tends to 0 as n → ∞. This proves the density of D.
Let us now characterize the domain. By definition, D(yαBn − yα) = (1− yαBn +

yα)−1
(
L p
m
)
. Let u = (1 − yαBn + yα)−1 f with f ∈ L p

m . Using Corollary 8.2 (ii),
we obtain

‖yαu‖L p
m

+ ‖yαBu‖L p
m

≤ C
(
‖(yαB − yα)u‖L p

m
+ ‖u‖L p

m

)
(13)

which proves the inclusion D(yαBn − yα) ⊆ D(yαBn)∩D(yα). To prove the reverse
property, we observe that since the graph norm of yαBn − yα is clearly weaker than
the norm of D(yαBn) ∩ D(yα), inequality (13) again shows that they are equivalent
on D(yαBn − yα), in particular on D which is dense in D(yαBn) ∩ D(yα), by the
previous step. Therefore, D(yαBn − yα) = D(yαBn) ∩ D(yα) and in particular D is
a core. �

We remark that Theorem 7.2 assures that yαBn − yα generates a semigroup on L p
m

under the milder assumption 0 < m+1
p < c + 1 − α and c + 1 > 0. However, the

hypothesis (m + 1)/p + α > 0 must be added when α < 0 in order that D ⊂ D(yα).
The same method yields the domain of Bn − 1

yα , using Corollary 8.2 (iii) with m
replaced by m − αp .

Corollary 8.6. If α+ < m+1
p < c + 1, then the domain of Bn − 1

yα is W 2,p
N (0,m) ∩

D( 1
yα ).
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