
J. Pseudo-Differ. Oper. Appl.           (2021) 12:35 
https://doi.org/10.1007/s11868-021-00406-x

Multipliers onS!(R
N)

Angela A. Albanese1 · Claudio Mele1

Received: 22 March 2021 / Revised: 7 April 2021 / Accepted: 12 April 2021
© The Author(s) 2021

Abstract
The aim of this paper is to introduce and to study the space OM,ω(RN ) of the multi-
pliers of the space Sω(RN ) of the ω-ultradifferentiable rapidly decreasing functions
of Beurling type. We determine various properties of the space OM,ω(RN ). More-
over, we define and compare some lc-topologies of whichOM,ω(RN ) can be naturally
endowed.

Keywords Multipliers · Weight functions · Ultradifferentiable rapidly decreasing
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1 Introduction

Classes of ultradifferentiable functions have been intensively investigated since the
20ies of the last century. The subject indeed has a long tradition that goes back to the
work of Gevrey [11]. Along the lines of [11], Komatsu introduced in [16] a way to
define the ultradifferentiable functions. It consists inmeasuring their growth behaviour
in terms of a weight sequence {Mp}p∈N0 , which satisfies certain conditions. Later
Beurling [1] (see also Björck [2]) showed that one can also use weight functions
ω to measure the smoothness of C∞-functions with compact support by the decay
properties of their Fourier transform. This approach was modified by Braun, Meise,
and Taylor [8], who showed that these classes can be defined by the decay behaviour
of their derivatives by using the Young conjugate of the function t �→ ω(et ). But, in
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general, the classes defined in one way cannot be defined in the other way (see, f.i.,
[6]).

The study of the space of multipliers and convolutors, OM and O′
C , of the space

S(RN ) of rapidly decreasing functions was started by Schwartz [27]. Since then the
spacesOM andO′

C attracted the attention of several authors, even recently (see [15,19–
22,24] and the references therein). On the other hand, the space of multipliers and
convolutors was introduced and studied in the setting of other classes of C∞-function
spaces (see, f.i., [10,14,18,25,26,28,29] and the references therein).

In the last years the attention has focused on the study of the space Sω(RN ) of
the ultradifferentiable rapidly decreasing functions of Beurling type, as introduced
by Björck [2] (see, [3–5], for instance, and the references therein). Inspired by this
line of research and by the previous work, in this paper we introduce and study the
space OM,ω(RN ) of the slowly increasing functions of Beurling type in the setting
of ultradifferentiable function space as introduced in [8]. In particular, we show that
OM,ω(RN ) is the space of themultipliers of the space Sω(RN ) and of its dualS ′

ω(RN ).
We also define and compare some locally convex topologies (briefly, lc) of which
OM,ω(RN ) can be naturally endowed.

The paper is organized as follows. Section 2 collects some known definitions and
properties about the weight functions in the sense of Braun, Meise and Taylor [8]
and the space Sω(RN ). Section 3 is devoted to the study of the space OM,ω(RN ) and
of related topological properties. In Sect. 3 we also introduce the space OC,ω(RN )

of the very slowly increasing functions of Beurling type. In particular, we show the
link between these spaces and their topological properties. In a forthcoming paper
we prove, f.i., that O′

C,ω(RN ) is the space of convolutors of S ′
ω(RN ) and the Fourier

exchange between the spaces O′
C,ω(RN ) and OM,ω(RN ). In Sect. 4 we show that

OM,ω(RN ) is the space of the multipliers of Sω(RN ). Finally, in Sect. 5 we study and
compare some lc-topologies of which OM,ω(RN ) can be endowed in a natural way.

2 Weight functions and the spaceS!(R
N)

We begin with the definition of non-quasianalytic weight function in the sense of
Braun-Meise-Taylor [8] suitable for the Beurling case, i.e., we also consider the log-
arithm as a weight function.

Definition 2.1 A non-quasianalytic weight function is a continuous increasing func-
tion ω : [0,∞) → [0,∞) satisfying the following properties:

(α) there exists K ≥ 1 such that ω(2t) ≤ K (1 + ω(t)) for every t ≥ 0;
(β)

∫ ∞
1

ω(t)
1+t2

dt < ∞;
(γ ) there exist a ∈ R, b > 0 such that ω(t) ≥ a + b log(1 + t), for every t ≥ 0;
(δ) ϕω(t) = ω ◦ exp(t) is a convex function.

Given a non-quasianalytic weight function ω, we can extend it on C
N by setting

ω(z) = ω(|z|) for all z ∈ C
N , where | · | denotes the standard euclidean norm.
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Remark 2.2 We now recall some known facts on weight functions that shall be useful
in the following; the proofs can be found in the literature.

Let ω be a non-quasianalytic weight function. Then the following properties are
satisfied.

(1) Condition (α) implies for every t1, t2 ≥ 0 that

ω(t1 + t2) ≤ K (1 + ω(t1) + ω(t2)). (2.1)

Observe that this condition is weaker than subadditivity (i.e., ω(t1 + t2) ≤ ω(t1) +
ω(t2)). The weight functions satisfying (α) are not necessarily subadditive in general.

(2) Condition (α) implies that there exists L ≥ 1 such that for every t ≥ 0

ω(et) ≤ L(1 + ω(t)). (2.2)

(3) By condition (β) and the fact that ω is an increasing function, we have that
ω(t) = o(t) as t → ∞. This can be deduced by the fact that for every t > 0 we have

ω(t)

t
=

∫ ∞

t

ω(t)

s2
ds ≤

∫ ∞

t

ω(s)

s2
ds .

Let ω be a non-quasianalytic weight function. We define the Young conjugate ϕ∗
ω

of ϕω as the function ϕ∗
ω : [0,∞) → [0,∞) defined by

ϕ∗
ω(s) := sup

t≥0
{st − ϕω(t)}, s ≥ 0. (2.3)

There is no loss of generality to assume that ω vanishes on [0, 1]. So, ϕ∗
ω has only

non-negative values. By Fenchel-Moreau Theorem (see, f.i., [7]), we have that ϕ∗
ω is

convex and increasing, ϕ∗
ω(0) = 0 and (ϕ∗

ω)∗ = ϕω. Further useful properties of ϕ∗
ω

are listed in the following lemma, see [8].

Lemma 2.3 Let ω : [0,∞) → [0,∞) be a non-quasianalytic weight function. Then
the following properties are satisfied.

(1) limt→∞ t
ϕ∗

ω(t) = 0.

(2) ϕ∗
ω(t)
t is an increasing function in (0,∞).

(3) For every s, t ≥ 0 and λ > 0

2λϕ∗
ω

(
s + t

2λ

)

≤ λϕ∗
ω

( s

λ

)
+ λϕ∗

ω

(
t

λ

)

≤ λϕ∗
ω

(
s + t

λ

)

. (2.4)

(4) For every t ≥ 0 and λ > 0

λLϕ∗
ω

(
t

λL

)

+ t ≤ λϕ∗
ω

(
t

λ

)

+ λL, (2.5)

where L ≥ 1 is the costant appearing in formula (2.2).
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Remark 2.4 Lemma 2.3 allows to list some properties that we will frequently use in
the sequel.

(1) For everym, M ∈ Nwith M ≥ mL , where L is the constant appearing in formula
(2.2), and for every α ∈ N

N
0

2|α| exp
(

Mϕ∗
ω

( |α|
M

))

≤ C exp

(

mϕ∗
ω

( |α|
m

))

, (2.6)

with C := emL .
(2) For every α, β ∈ N

N
0 and m ∈ N

2mϕ∗
ω

( |α + β|
2m

)

≤ mϕ∗
ω

( |α|
m

)

+ mϕ∗
ω

( |β|
m

)

≤ mϕ∗
ω

( |α + β|
m

)

. (2.7)

We now introduce the ultradifferentiable function spaces and their duals of Beurling
type in the sense of Braun, Meise and Taylor [8].

Definition 2.5 Let ω be a non-quasianalytic weight.
(a) For a compact subset K of RN and λ > 0 define

Eω,λ(K ) :=
⎧
⎨

⎩
f ∈ C∞(K ) : pK ,λ( f ) := sup

x∈K
sup

α∈NN
0

|∂α f (x)| exp
(

−λϕ∗
ω

( |α|
λ

))

< ∞
⎫
⎬

⎭
.

Then (Eω,λ(K ), pK ,λ) is a Banach space.
(b) For an open subset 
 of RN define

Eω(
) := {
f ∈ C∞(
) : pK ,m( f ) < ∞ ∀K � 
, m ∈ N

}

and endow it with its natural Fréchet space topology, i.e., with the lc-topology gener-
ated by the system of seminorms {pK ,m}K�
,m∈N. The elements of Eω(
) are called
ω-ultradifferentiable functions of Beurling type on 
. The dual E ′

ω(
) of Eω(
) is
endowed with its strong topology.

(c) For a compact subset K of RN define

Dω(K ) :=
{
f ∈ Eω(RN ) : supp f ⊆ K

}

and endow it with the Fréchet space topology generated by the sequence {pK ,m}m∈N
of norms. For an open subset 
 of RN define

Dω(
) := ind j→Dω(K j ),

where {K j } j∈N is any fundamental sequence of compact subsets of 
. The ele-
ments of Dω(
) are called test functions of Beurling type on 
. The dual D′

ω(
)

of Dω(
) is endowed with its strong topology. The elements of D′
ω(
) are called

ω-ultradistributions of Beurling type on 
.
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Remark 2.6 Let ω be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) For every open subset 
 of RN the space Eω(
) is a nuclear Fréchet space, see
[8, Proposition 4.9].

(2) For every compact subset K ofRN we haveDω(K ) 
= {0} andDω(K ) is a nuclear
Fréchet space, see [8, Remark 3.2 (1) and Corollary 3.6(2)].

(3) For every open subset
 ofRN the inclusionDω(
) ↪→ Eω(
) is continuous with
dense range, see [8, Proposition 4.7 (1)].

We consider the following notation for the Fourier transform of a function f ∈
L1(RN ):

F( f )(ξ) = f̂ (ξ) :=
∫

RN
f (x)e−i xξ dx, ξ ∈ R

N ,

with standard extensions to more general spaces of functions or distributions. We
introduce the space of weighted rapidly decreasing functions of Beurling type as
defined in [2, Definition 1.8.1].

Definition 2.7 Let ω be a non-quasianalytic weight function. We denote by Sω(RN )

the set of all functions f ∈ L1(RN ) such that f , f̂ ∈ C∞(RN ) and for each λ > 0
and α ∈ N

N
0 we have

‖ exp(λω)∂α f ‖∞ < ∞ and ‖ exp(λω)∂α f̂ ‖∞ < ∞ . (2.8)

The elements of Sω(RN ) are called ω-ultradifferentiable rapidly decreasing functions
of Beurling type.

The space Sω(RN ) is a Fréchet space with respect to the lc-topology generated by
the sequence of norms

‖ exp(nω)∂α f ‖∞ + ‖ exp(nω)∂α f̂ ‖∞, f ∈ Sω(RN ), n ∈ N.

We denote by S ′
ω(RN ) the dual of Sω(RN ) endowed with its strong topology.

Remark 2.8 Let ω be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) The condition (γ ) of Definition 2.1 implies that Sω(RN ) ⊆ S(RN ) with continu-
ous inclusion. Accordingly, we can rewrite the definition of Sω(RN ) as the set of
all the rapidly decreasing functions that satisfy the condition (2.8) in Definition
2.7.

(2) The Fourier transformF : Sω(RN ) → Sω(RN ) is a continuous isomorphism, that
can be extended in the usual way to S ′

ω(RN ), see [2, Proposition 1.8.2].
(3) The space Sω(RN ) is closed under convolution, under multiplication, translation

and modulation, where the translation and modulation operators are defined by
τy f (x) := f (x − y) and Mt f (x) := eitx f (x), respectively, where t, x, y ∈ R

N ,
see [2, Propositions 1.8.3 and 18.5].
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(4) The inclusion Dω(RN ) ↪→ Sω(RN ) ↪→ Eω(RN ) are continuous with dense
range, see [8, Proposition 4.7.(1)] and [2, Propositions 1.8.6 and 1.8.7]. There-
fore, E ′

ω(RN ) ⊂ S ′
ω(RN ) ⊂ D′

ω(RN ).
(5) The space Sω(RN ) is a nuclear Fréchet space, see [5, Theorem 3.3].

The space Sω(RN ) is a Fréchet space with different equivalent systems of semi-
norms. Indeed, the following result holds (see [4, Theorem 4.8] and [3, Theorems
2.6]).

Proposition 2.9 Let ω be a non-quasianalytic weight function and consider f ∈
S(RN ). Then f ∈ Sω(RN ) if and only if one of the following conditions is satis-
fied.

(1) (i) ∀λ > 0, α ∈ N
N
0 , 1 ≤ p ≤ ∞ ∃Cα,λ,p > 0 such that ‖ exp(λω)∂α f ‖p ≤

Cα,λ,p, and
(ii) ∀λ > 0, α ∈ N

N
0 , 1 ≤ p ≤ ∞ ∃Cα,λ,p > 0 such that ‖ exp(λω)∂α f̂ ‖p ≤

Cα,λ,p.
(2) (i) ∀λ > 0, 1 ≤ p ≤ ∞ ∃Cλ,p > 0 such that ‖ exp(λω) f ‖p ≤ Cλ,p, and

(ii) ∀λ > 0, 1 ≤ p ≤ ∞ ∃Cλ,p > 0 such that ‖ exp(λω) f̂ ‖p ≤ Cλ,p.
(3) ∀λ, μ > 0, 1 ≤ p ≤ ∞ ∃Cλ,μ,p > 0 such that

sup
α∈NN

0

‖ exp(μω)∂α f ‖p exp

(

−λϕ∗
ω

( |α|
λ

))

≤ Cλ,μ,p.

Remark 2.10 We observe that the assumption f ∈ S(RN ) in Proposition 2.9 can
be replaced by the weaker assumption f ∈ C∞(RN ). Indeed, the condition (γ ) in
Definition 2.1 implies for every x ∈ R

N and α ∈ N
N
0 that

|xα| ≤ exp

(

−|α|
b

)

exp

( |α|
b

ω(x)

)

,

where b is the constant appearing in condition (γ ). Therefore, if one (and hence all)
of the equivalent conditions (1)÷(3) of Proposition 2.9 is satisfied, then for every
α, β ∈ N

N
0 and 1 ≤ p ≤ ∞ we have

‖xα∂β f ‖p ≤ exp

(

−|α|
b

) ∥
∥
∥
∥exp

( |α|
b

ω

)

∂β f

∥
∥
∥
∥
p

< ∞.

Accordingly, f ∈ S(RN ).

In the following, we will use this system of norms generating the Fréchet topology
of Sω(RN ):

qλ,μ( f ) := sup
α∈NN

0

sup
x∈RN

exp

(

−λϕ∗
ω

( |α|
λ

))

exp(μω(x))|∂α f (x)|, λ, μ > 0, f ∈ Sω(RN ).

In particular, the Fréchet topology of Sω(RN ) is generated by the sequence of norms
{qm,n}m,n∈N.
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3 The spacesOM,!(R
N) andOC,!(R

N)

We first introduce the spaces OM,ω(RN ) and OC,ω(RN ) and then we collect some
basic properties about them.

Definition 3.1 Let ω be a non-quasianalytic weight function.
(a) For m ∈ N and n ∈ Z we define the space Om

n,ω(RN ) as the set of all functions
f ∈ C∞(RN ) satisfying the following condition:

rm,n( f ) := sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−nω(x) − mϕ∗
ω

( |α|
m

))

< ∞. (3.1)

(b) We denote by OM,ω(RN ) the set of all functions f ∈ C∞(RN ) such that for
each m ∈ N there exist C > 0 and n ∈ N such that for every α ∈ N

N
0 and x ∈ R

N we
have

|∂α f (x)| ≤ C exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

; (3.2)

or equivalently,

OM,ω(RN ) :=
∞⋂

m=1

∞⋃

n=1

Om
n,ω(RN ). (3.3)

The elements of OM,ω(RN ) are called slowly increasing functions of Beurling type.
(c) We denote by OC,ω(RN ) the set of all functions f ∈ C∞(RN ) for which there

exists n ∈ N such that for every m ∈ N there exists C > 0 so that for every α ∈ N
N
0

and x ∈ R
N we have

|∂α f (x)| ≤ C exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

; (3.4)

or equivalently,

OC,ω(RN ) :=
∞⋃

n=1

∞⋂

m=1

Om
n,ω(RN ). (3.5)

The elements of OC,ω(RN ) are called very slowly increasing functions of Beurling
type.

Remark 3.2 By Definition 3.1, we immediately obtain the following properties.

(1) Dω(RN ) ⊆ OC,ω(RN ) and Dω(RN ) ⊆ OM,ω(RN ).
(2) For every α ∈ N

N
0 the function xα ∈ OM,ω(RN ). Indeed, fixed any α ∈ N

N
0 , we

have that ∂βxα = ∏N
i=1 αi (αi − 1). . . . .(αi − βi + 1)xαi−βi

i for β ≤ α, and that
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∂βxα = 0 for β > α. Since condition (γ ) implies that (1 + t) ≤ e− a
b e

1
bω(t) for

all t ≥ 0 and ω is an increasing function on [0,∞), we have for every β ≤ α and
x ∈ R

N that

|∂βxα| ≤
N∏

i=1

αi !e− a
b (αi−βi )e

1
bω(|xi |) ≤ α!e− a

b |α|e
|α|
b ω(x).

Accordingly, xα ∈ OM,ω(RN ).
(3) The function log(1 + |x |2) ∈ OC,ω(RN ) and the proof follows as in the case (2)

above.

We now give an useful characterization of the elements of the spaces OM,ω(RN )

and OC,ω(RN ).

Proposition 3.3 Let ω be a non-quasianalytic weight function. Then the following
properties are satified.

(1) A function f ∈ C∞(RN ) is a slowly increasing function of Beurling type if and
only if f ∈ Eω(RN ) and for each m ∈ N there exist C, R > 0 and n ∈ N such
that for every α ∈ N

N
0 and x ∈ R

N with |x | ≥ R we have

|∂α f (x)| ≤ C exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

. (3.6)

(2) A function f ∈ C∞(RN ) is a very slowly increasing function of Beurling type if
and only if f ∈ Eω(RN ) and there exists n ∈ N such that for every m ∈ N there
exist C, R > 0 so that for every α ∈ N

N
0 and x ∈ R

N with |x | ≥ R we have

|∂α f (x)| ≤ C exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

. (3.7)

Proof (1) The necessity of the condition (3.6) is obvious. We need only to prove that
f ∈ Eω(RN ). So, fix a compact subset K of RN . Then for each m ∈ N there exists
n ∈ N such that for every α ∈ N

N
0 and x ∈ K we have

|∂α f (x)| ≤ rm,n( f ) exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

≤ D rm,n( f ) exp

(

mϕ∗
ω

( |α|
m

))

,

where D := maxy∈K {exp(nω(y))} < ∞ is a constant depending only on n and K .
Hence, it follows for every m ∈ N that

pK ,m( f ) = sup
α∈NN

0

sup
x∈K

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤ D rm,n( f ) < ∞.

Since K is arbitrary, this implies that f ∈ Eω(RN ).
We now prove the sufficiency of the condition.



Multipliers on Sω(RN) Page 9 of 36    35 

Fixm ∈ N. By assumption there exist C, R > 0 and n ∈ N such that the inequality
(3.6) is satisfied and f ∈ Eω(RN ). Accordingly, we have

K1 := sup
α∈NN

0

sup
|x |≤R

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

< ∞.

If we set K2 := min|x |≤R exp(nω(x)) ≥ 1, then we obtain for every |x | ≤ R and
α ∈ N

N
0 that

|∂α f (x)| ≤ K1 exp

(

mϕ∗
ω

( |α|
m

))

= K1

K2
K2 exp

(

mϕ∗
ω

( |α|
m

))

≤ K1

K2
exp(nω(x)) exp

(

mϕ∗
ω

( |α|
m

))

.

Therefore, setting C ′ := max
{
K1
K2

,C
}
, the inequality (3.2) follows.

(2) follows by the same arguments for the proof of property (1) above. ��
We now establish some features concerning topological properties of the spaces

introduced in Definition 3.1.

Proposition 3.4 Let ω be a non-quasianalytic weight function. Then the following
properties are satisfied.

(1) Let m ∈ N and n ∈ Z. Then
(Om

n,ω(RN ), rm,n
)
is a Banach space.

(2) For every n, n′ ∈ Z with n ≤ n′ and m ∈ N, the inclusion

(Om
n,ω(RN ), rm,n) ↪→ (Om

n′,ω(RN ), rm,n′) (3.8)

is well-defined and continuous.
(3) For every n ∈ Z and m,m′ ∈ N with m ≤ m′, the inclusion

(Om′
n,ω(RN ), rm′,n) ↪→ (Om

n,ω(RN ), rm,n) (3.9)

is well-defined and continuous.

Proof (1) Fix m ∈ N and n ∈ Z. It sufficies to show only the completeness. So, we
fix a Cauchy sequence { f j } j∈N in (Om

n,ω(RN ), rm,n) and observe that

|∂α f j (x) − ∂α f j ′(x)| ≤ exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

rm,n( f j − f j ′), (3.10)

for all j, j ′ ∈ N, α ∈ N
N
0 and x ∈ R

N . Therefore, for any compact subset K of RN ,
we have

sup
β≤α

sup
x∈K

|∂β f j (x) − ∂β f j ′(x)| ≤ CK ,αrm,n( f j − f j ′),
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for all j, j ′ ∈ N and α ∈ N
N
0 , where CK ,α := supx∈K exp(nω(x)) supβ≤α

exp
(
mϕ∗

ω

( |α|
m

))
< ∞. Since rm,n( f j − f j ′) → 0 as j, j ′ → ∞, and C∞(RN )

is a Fréchet space, it follows that { f j } j∈N is also a Cauchy sequence in C∞(RN ).
Accordingly, there exists f ∈ C∞(RN ) such that f j → f in C∞(RN ), as j → ∞.
In particular, ∂α f j → ∂α f uniformly on compact subsets of RN for every α ∈ N

N
0 .

Now, fix ε > 0. Since { f j } j∈N is a Cauchy sequence in (Om
n,ω(RN ), rm,n), there

exists j0 ∈ N such that rm,n( f j − f j ′) ≤ ε for all j, j ′ ≥ j0. It follows by (3.10) that
for every j, j ′ ≥ j0, x ∈ R

N and α ∈ N
N
0 we have

|∂α f j (x) − ∂α f j ′(x)| ≤ ε exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

.

Letting j ′ → ∞ in the inequality above, we obtain for every j ≥ j0, x ∈ R
N and

α ∈ N
N
0 that

|∂α f j (x) − ∂α f (x)| ≤ ε exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

.

Accordingly, we have

rm,n( f j − f ) ≤ ε ∀ j ≥ j0,

rm,n( f ) ≤ rm,n( f − f j0) + rm,n( f j0) ≤ ε + rm,n( f j0) < ∞.

This means that f ∈ Om
n,ω(RN ) and that f j → f in (Om

n,ω(RN ), rm,n) for j → ∞,
as ε > 0 is arbitrary.

(2) Fix n, n′ ∈ Z with n ≤ n′ and m ∈ N. Then for every f ∈ Om
n,ω(RN ), we have

rm,n′( f ) = sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−n′ω(x) − mϕ∗
ω

( |α|
m

))

≤ sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−nω(x) − mϕ∗
ω

( |α|
m

))

= rm,n( f ).

Therefore, the inclusion in (3.8) is well-defined and continuous.
(3) Fix m,m′ ∈ N with m ≤ m′ and n ∈ Z. Since ϕ∗

ω(t)/t is an increasing function
in (0,∞) (see Lemma 2.3(2)), for every f ∈ Om′

n,ω(RN ) we have

rm,n( f ) = sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−nω(x) − mϕ∗
ω

( |α|
m

))

≤ sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−nω(x) − m′ϕ∗
ω

( |α|
m′

))

= rm′,n( f ).

Therefore, the inclusion in (3.9) is well-defined and continuous. ��
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Via Proposition 3.4(1)–(2) we deduce that the sequence {(Om
n,ω(RN ), rm,n)}n∈N

of Banach spaces forms for each m ∈ N an inductive spectrum. The space⋃∞
n=1Om

n,ω(RN ), endowed with the inductive topology defined by
{(Om

n,ω(RN ), rm,n)}n∈N, is then an (LB)-space for each m ∈ N. On the other hand,
via Proposition 3.4(1)–(3) we also deduce for every n ∈ N that the sequence
{(Om

n,ω(RN ), rm,n)}m∈N of Banach spaces forms a projective spectrum. So, for every
n ∈ N the space

⋂∞
m=1Om

n,ω(RN ), endowed with the projective topology defined
by {(Om

n,ω(RN ), rm,n)}m∈N, is a Fréchet space. In the following we always sup-
pose that the spaces

⋃∞
n=1Om

n,ω(RN ) and
⋂∞

m=1Om
n,ω(RN ) are equipped respectively

with the (LB)-topology and Fréchet topology defined above. In particular, the spaces⋃∞
n=1Om

n,ω(RN ) and
⋂∞

m=1Om
n,ω(RN ) satisfy the following properties.

Proposition 3.5 Let ω be a non-quasianalytic weight function and m ∈ N. Then⋃∞
n=1Om

n,ω(RN ) is a complete (LB)-space.

Proof In order to show the completeness of the space
⋃∞

n=1Om
n,ω(RN ), we first prove

that the inclusion
⋃∞

n=1Om
n,ω(RN ) ↪→ C∞(RN ) is continuous as follows.

Fix n ∈ N. Then for every compact subset K of RN and α ∈ N
N
0 we have

sup
x∈K

sup
β≤α

|∂β f (x)|

= sup
x∈K

sup
β≤α

|∂β f (x)| exp
(

−nω(x) − mϕ∗
ω

( |β|
m

))

exp

(

nω(x) + mϕ∗
ω

( |β|
m

))

≤ CK ,αrm,n( f )

for each f ∈ Om
n,ω(RN ),whereCK ,α := supx∈K supβ≤α exp

(
nω(x) + mϕ∗

ω

( |β|
m

))
<

∞ is a positive constant depending on K and α. This means that the inclusion
(Om

n,ω(RN ), rm,n) ↪→ C∞(RN ) is continuous. Since n ∈ N is arbitrary and
⋃∞

n=1Om
n,ω(RN ) is an (LB)-space, the inclusion

⋃∞
n=1Om

n,ω(RN ) ↪→ C∞(RN ) is
continuous too. Therefore, there exists a Hausdorff lc-topology τ on

⋃∞
n=1Om

n,ω(RN )

with the property that the closed unit ball of each Om
n,ω(RN ) is relatively τ -compact.

But, the closed unit ball of each Om
n,ω(RN ) is also τ -compact. Indeed, let n ∈ N and

let { f j } j∈N ⊆ {g ∈ Om
n,ω(RN ) : rm,n(g) ≤ 1} τ -convergent to some f ∈ C∞(RN ).

Then for every x ∈ R
N , j ∈ N and α ∈ N

N
0 we have

|∂α f j (x)| ≤ exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

. (3.11)

Since f j → f in C∞(RN ) as j → ∞ and hence ∂α f j → ∂α f pointwise on R
N for

each α ∈ N
N
0 , it follows by letting j → ∞ in (3.11) for every x ∈ R

N and α ∈ N
N
0

that

|∂α f (x)| ≤ exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

.
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This implies that rm,n( f ) ≤ 1. So, {g ∈ Om
n,ω(RN ) : rm,n(g) ≤ 1} is τ -closed.

The result now follows by Mujica [23, Theorem 1]. ��
Proposition 3.6 Let ω be a non-quasianalytic weight function. Then the following
properties are satisfied.

(1) For every n, n′ ∈ Z with n ≤ n′, the inclusion

∞⋂

m=1

Om
n,ω(RN ) ↪→

∞⋂

m=1

Om
n′,ω(RN ) (3.12)

is well-defined and continuous.
(2) For every m,m′ ∈ N with m ≤ m′, the inclusion

∞⋃

n=1

Om′
n,ω(RN ) ↪→

∞⋃

n=1

Om
n,ω(RN ) (3.13)

is well-defined and continuous.

Proof (1) Fix n, n′ ∈ Zwith n ≤ n′. Then, for every h ∈ N and f ∈ ⋂∞
m=1Om

n,ω(RN ),
we have

rh,n′( f ) = sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−n′ω(x) − hϕ∗
ω

( |α|
h

))

≤ sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−nω(x) − hϕ∗
ω

( |α|
h

))

= rh,n( f ).

This means that the inclusion in (3.12) is well-defined and continuous.
(2) Fix m,m′ ∈ N with m ≤ m′ and h ∈ N. Then by Proposition 3.4(3) the

inclusion (Om′
h,ω(RN ), rm′,h) ↪→ (Om

h,ω(RN ), rm,h) is continuous. On the other hand,

the inclusion (Om
h,ω(RN ), rm,h) ↪→ ⋃∞

n=1Om
n,ω(RN ) is also continuous. Accordingly,

the inclusion

(Om′
h,ω(RN ), rm′,h) ↪→

∞⋃

n=1

Om
n,ω(RN )

is continuous. Since h ∈ N is arbitrary and
⋃∞

h=1Om′
h,ω(RN ) is an (LB)-space, it

follows that the inclusion

∞⋃

h=1

Om′
h,ω(RN ) ↪→

∞⋃

n=1

Om
n,ω(RN )

is continuous, i.e., the inclusion in (3.12) is well-defined and continuous. ��
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Proposition 3.6(1) yields that the sequence
{⋂∞

m=1Om
n,ω(RN )

}
n∈N of Fréchet

spaces forms an inductive spectrum. So, we can endow the space OC,ω(RN ) with the
inductive topology defined by

{⋂∞
m=1Om

n,ω(RN )
}
n∈N. Thereby,OC,ω(RN ), equipped

with such an inductive topology, is an (LF)-space. Proposition 3.6(2) also yields
that the sequence

{⋃∞
n=1Om

n,ω(RN )
}
m∈N of (LB)-spaces is a projective spectrum.

So, we can endow the space OM,ω(RN ) with the projective topology defined by{⋃∞
n=1Om

n,ω(RN )
}
m∈N. Thereby,OM,ω(RN ), equipped with this projective topology,

is a projective limit of (LB)-spaces. By Proposition 3.5, it is then a complete lc-space.
In the following we always assume that the spaces OC,ω(RN ) and OM,ω(RN ) are
endowed with the lc-topologies defined above.

Remark 3.7 We observe that, for fixed m ∈ N and n ∈ N, we have that

qm,n( f ) = sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(nω(x))|∂α f (x)| = rm,−n( f ).

for every f ∈ Sω(RN ). Since {qm,n}m,n∈N is a fundamental sequence of norms gener-
ating the Fréchet topology of Sω(RN ), it follows that Sω(RN ) = ⋂∞

n=1
⋂∞

m=1Om−n,ω

(RN ).

Theorem 3.8 Let ω be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) The inclusion

OC,ω(RN ) ↪→ OM,ω(RN ) (3.14)

is well-defined and continuous.
(2) The inclusions

Sω(RN ) ↪→ OC,ω(RN ) ↪→ Eω(RN ) (3.15)

are well-defined and continuous.

Proof (1) Fix f ∈ OC,ω(RN ) andm ∈ N. Then there exists n ∈ N such that rm,n( f ) <

∞ and so, f ∈ Om
n,ω(RN ) ⊂ ⋃∞

h=1Om
h,ω(RN ). Since m ∈ N is arbitrary, we can

conclude that f ∈ OM,ω(RN ). We have so shown that the inclusion is well-defined.
We now prove that such an inclusion is continuous as follows.

We first observe that for every m′ ∈ N and n, n′ ∈ N with n ≤ n′, the inclusion

∞⋂

m=1

Om
n,ω(RN ) ↪→ Om′

n′,ω(RN )

is well-defined and continuous. Indeed, for every f ∈ ⋂∞
m=1Om

n,ω(RN ) we have

rm′,n′( f ) = sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−n′ω(x) − m′ϕ∗
ω

( |α|
m′

))
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≤ sup
α∈NN

0

sup
x∈RN

|∂α f (x)| exp
(

−nω(x) − m′ϕ∗
ω

( |α|
m′

))

= rm′,n( f ).

Since rm′,n ∈ {rm,n}m∈N and {rm,n}m∈N is a sequence of norms defining the lc-topology
of

⋂∞
m=1Om

n,ω(RN ), it follows that the inclusion
⋂∞

m=1Om
n,ω(RN ) ↪→ Om′

n′,ω(RN )

is continuous. Taking into account that
⋃∞

h=1Om′
h,ω(RN ) is an (LB)-space and so,

Om′
n′,ω(RN ) ↪→ ⋃∞

h=1Om′
h,ω(RN ) continuously, we deduce for every m′ ∈ N and

n ∈ N that the inclusion

∞⋂

m=1

Om
n,ω(RN ) ↪→

∞⋃

h=1

Om′
h,ω(RN )

is well-defined and continuous. Since OM,ω(RN ) = ⋂∞
m′=1

⋃∞
h=1Om′

h,ω(RN ) is the

projective limit of the sequence
{⋃∞

h=1Om′
h,ω(RN )

}

m′∈N of (LB)-spaces, it follows for

every n ∈ N that the inclusion

∞⋂

m=1

Om
n,ω(RN ) ↪→ OM,ω(RN )

is well-defined and continuous. Finally, since OC,ω(RN ) is the inductive limit of the
sequence

{⋂∞
m=1Om

n,ω(RN )
}
n∈N of Fréchet space, it follows that the inclusion

OC,ω(RN ) ↪→ OM,ω(RN )

is continuous.
(2) We first show that the inclusion OC,ω(RN ) ↪→ Eω(RN ) is continuous. So, fix

f ∈ OC,ω(RN ) and n ∈ N. Then f ∈ ⋂∞
h=1Oh

n,ω(RN ). This implies for everym ∈ N

and K compact subset of RN that

pK ,m( f ) = sup
α∈NN

0

sup
x∈K

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

= sup
α∈NN

0

sup
x∈K

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

exp(nω(x) − nω(x))

≤ D sup
α∈NN

0

sup
x∈K

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

exp(−nω(x)) ≤ D rm,n( f ) < ∞,

where D := maxy∈K {exp(nω(y))} < ∞ is a constant depending only on n and K .
Since {rm,n}m∈N is a sequence of norms generating the lc-topology of the Fréchet
space

⋂∞
h=1Oh

n,ω(RN ) and {pK ,m}K�RN is a sequence of seminorms generating the
lc-topology of the Fréchet space Eω(RN ), it follows that the inclusion
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∞⋂

h=1

Oh
n,ω(RN ) ↪→ Eω(RN )

is continuous. Since n ∈ N is arbitrary and OC,ω(RN ) is the inductive limit of the
Fréchet spaces

{⋂∞
h=1Oh

n,ω(RN )
}
n∈N, it follows that the inclusion on the right of

(3.15) is continuous.
We now show that the inclusion Sω(RN ) ↪→ OC,ω(RN ) is continuous. So, fix

f ∈ Sω(RN ). Then for every m, n ∈ N we have that qm,n( f ) < ∞, thereby implying
that

rm,n( f ) = α ∈ N
N
0 sup sup

x∈RN
exp

(

−mϕ∗
ω

( |α|
m

))

exp(−nω(x))|∂α f (x)|

< qm,n( f ) < ∞. (3.16)

Hence, f ∈ OC,ω(RN ). This shows that the inclusion is well-defined. To prove the
continuity of the inclusion, we observe that for every n, n′ ∈ N and m ∈ N the
inclusion

∞⋂

m=1

Om−n,ω(RN ) ↪→
∞⋂

m=1

Om
n′,ω(RN )

is continuous. Since
⋂∞

m=1Om
n′,ω(RN ) ↪→ OC,ω(RN ) continuously for all n′ ∈ N, it

follows for every m ∈ N that the inclusion

∞⋂

m=1

Om−n,ω(RN ) ↪→ OC,ω(RN )

is continuous. Accordingly, as Sω(RN ) is the projective limit of the Fréchet spaces{⋂∞
m=1Om−n,ω(RN )

}
n∈N, we can conclude that the inclusion on the left of (3.14) is

continuous. ��
Finally, OM,ω(RN ) and OC,ω(RN ) have the following important property.

Theorem 3.9 Let ω be a non-quasianalytic weight function. Then the following inclu-
sions

Dω(RN ) ⊆ Sω(RN ) ⊆ OC,ω(RN ) ⊆ OM,ω(RN ) ⊆ Eω(RN )

are dense.

Proof The space Dω(RN ) is a dense subspace of Sω(RN ) and of Eω(RN ), see
[8, Proposition 4.7.(1)] and [2, Propositions 1.8.6 and 1.8.7]. So, both the spaces
OC,ω(RN ) and OM,ω(RN ) are dense subspaces of Eω(RN ).

We now prove that Sω(RN ) is a dense subspace of OC,ω(RN ) as follows.
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SinceDω(RN ) ⊆ Sω(RN ), it suffices to showonly thatDω(RN ) is a dense subspace
of OC,ω(RN ). So, fix f ∈ OC,ω(RN ) and φ ∈ Dω(RN ) such that φ ≡ 1 on B1(0)
and 0 ≤ φ ≤ 1. Then for every ε > 0 the function φε(x) := φ(εx) f (x), for x ∈ R

N ,
belongs to Dω(RN ) because OC,ω(RN ) ⊆ Eω(RN ). Since f ∈ OC,ω(RN ), we have
that f ∈ ⋂∞

m=1Om
n,ω(RN ) for some n ∈ N. This implies that f ∈ ⋂∞

m=1Om
h,ω(RN )

for every h ∈ N with h ≥ n. We claim that rm,n+1(φε − f ) → 0 as ε → 0+ for every
m ∈ N. To show the claim, we proceed as follows.

Fixm ∈ N and let M ∈ N such that M ≥ Lm, where L ≥ 1 is the costant appearing
in formula (2.2). Then for every α ∈ N

N
0 , x ∈ R

N and ε > 0 we have

|∂αφε(x) − ∂α f (x)| ≤ |∂α f (x)(φ(εx) − 1)| +
∑

β<α

(
α

β

)

|∂β f (x)|εα−β |∂α−βφ(εx)|

≤ |∂α f (x)(φ(εx) − 1)| +
∑

β<α

(
α

β

)

εα−βrM,n+1( f ) exp((n + 1)ω(x))

× exp

(

Mϕ∗
ω

( |β|
M

))

rM,0(φ) exp

(

Mϕ∗
ω

( |α − β|
M

))

≤ |∂α f (x)(φ(εx) − 1)| +
∑

β<α

(
α

β

)

εα−βrM,n+1( f ) exp((n + 1)ω(x))

× rM,0(φ) exp

(

Mϕ∗
ω

( |α|
M

))

≤ |∂α f (x)(φ(εx) − 1)|
+ rM,n+1( f )rM,0(φ) exp((n + 1)ω(x)) exp

(

Mϕ∗
ω

( |α|
M

))

ε2|α|,

(3.17)

after having observed that
∑

β<α

(
α
β

)
εα−β ≤ ε2|α| for every α ∈ N

N
0 and using

formula (2.7). Since M ≥ mL , applying the inequality (2.6) it follows via (3.17) for
every α ∈ N

N
0 , x ∈ R

N and ε > 0 that

|∂αφε(x) − ∂α f (x)| ≤ |∂α f (x)(φ(εx) − 1)|
+ εCrM,n+1( f )rM,0(φ) exp((n + 1)ω(x)) exp

(

mϕ∗
ω

( |α|
m

))

.

Therefore, we have for every ε > 0 that

rm,n+1(φε − f ) = sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))|∂αφε(x) − ∂α f (x)|

≤ sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))|∂α f (x)(φ(εx) − 1)|

+ εCrM,n+1( f )rM,0(φ).
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Since f ∈ ⋂∞
m=1Om

n,ω(RN ) and φ ∈ Dω(RN ), rM,n+1( f )rM,0(φ) < ∞ and so, we
have εCrM,n+1( f )rM,0(φ) → 0 as ε → 0+. In order to conclude the proof, it then
remains to prove that

sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))|∂α f (x)(φ(εx) − 1)| → 0, as ε → 0+.

But, φ(εx) − 1 = 0 whenever |x | ≤ 1
ε
. Accordingly, we have

sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))|∂α f (x)(φ(εx) − 1)|

= sup
α∈NN

0

sup
|x |> 1

ε

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))|∂α f (x)(φ(εx) − 1)|

≤ rm,n( f ) sup
|x |> 1

ε

exp(−ω(x)).

Since sup|x |> 1
ε
exp(−ω(x)) → 0 as ε → 0+, the claim is proved.

From the arbitarity ofm ∈ N, we can conclude that φε → f in
⋂∞

m=1Om
n+1,ω(RN )

as ε → 0+ and hence inOC,ω(RN ), taking into account thatOC,ω(RN ) is the inductive
limit of the Fréchet spaces

{⋂∞
m=1Om

n,ω(RN )
}
n∈N.

We now prove that Sω(RN ) is a dense subspace ofOM,ω(RN ), thereby obtaing by
Theorem 3.8 thatOC,ω(RN ) is also a dense subspace ofOM,ω(RN ). SinceDω(RN ) ⊆
Sω(RN ), it suffices to show only thatDω(RN ) is a dense subspace ofOM,ω(RN ). So,
fix f ∈ OM,ω(RN ) and φ ∈ Dω(RN ) such that φ ≡ 1 on B1(0) and 0 ≤ φ ≤ 1. Then
for every ε > 0 the function φε(x) := φ(εx) f (x), for x ∈ R

N , belongs to Dω(RN )

because OM,ω(RN ) ⊆ Eω(RN ). To show that ϕε → f in OM,ω(RN ), we proceed as
follows.

Fix m ∈ N and let M ∈ N such that M ≥ mL , where L ≥ 1 is the constant
appearing in formula (2.2). Since f ∈ OM,ω(RN ), there exist n(m), n(M) ∈ N

such that f ∈ Om
n(m),ω(RN ) and f ∈ OM

n(M),ω(RN ). Clearly, this implies that f ∈
Om

h,ω(RN ) ∩ OM
h,ω(RN ) for every h ≥ n := max{n(M), n(m)}. Therefore, we can

proceed as above to show that for every ε > 0 we have

rm,n+1(φε − f ) ≤ sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))

× |∂α f (x)(φ(εx) − 1)| + εCrM,n+1( f )rM,0(φ).

Since f ∈ OM
n+1,ω(RN ) and φ ∈ Dω(RN ), we have rM,n+1( f )rM,0(φ) < ∞ and

hence, εCrM,n+1( f )rM,0(φ) → 0 as ε → 0+. In order to conclude the proof, it then
remains to prove that

sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))|∂α f (x)(φ(εx) − 1)| → 0, as ε → 0+.
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As before, we have φ(εx) − 1 = 0 whenever |x | ≤ 1
ε
. Therefore, for every ε > 0 we

have

sup
α∈NN

0

sup
x∈RN

exp

(

−mϕ∗
ω

( |α|
m

))

exp(−(n + 1)ω(x))|∂α f (x)(φ(εx) − 1)|

≤ rm,n( f ) sup
|x |> 1

ε

exp(−ω(x)),

where sup|x |> 1
ε
exp(−ω(x)) → 0 as ε → 0+ and rm,n( f ) < ∞. This means that

φε → f in the Banach space Om
n+1,ω(RN ) as ε → 0+, and hence in the (LB)-space

⋃∞
h=1Om

h,ω(RN ). Since m ∈ N is arbitrary and OM,ω(RN ) is the projective limit of

the (LB)-spaces
{⋃∞

h=1Om
h,ω(RN )

}

m∈N, we can conclude that φε → f in the space

OM,ω(RN ) as ε → 0+. This completes the proof. ��

4 OM,!(R
N) is the space of multipliers of the spacesS!(R

N) and
S ′
!(R

N)

The main aim of this section is to prove that OM,ω(RN ) is the space of multipliers
of both the spaces Sω(RN ) and S ′

ω(RN ). In order to do this, we first show some
preliminary facts.

Lemma 4.1 Let ω be a non-quasianalytic weight function and f ∈ C∞(RN ). If f g ∈
Sω(RN ) for every g ∈ Sω(RN ), then f ∈ Eω(RN ).

Proof Fix a compact subset K of RN and g ∈ Dω(RN ) ⊆ Sω(RN ) such that g ≡ 1
on K and 0 ≤ g ≤ 1. Then f g ∈ Sω(RN ) and so, for every m ∈ N we have

qm,1( f g) = sup
α∈NN

0

sup
x∈RN

|∂α( f g)(x)| exp
(

−mϕ∗
ω

( |α|
m

))

exp(ω(x)) < ∞.

Since g ≡ 1 on K , it follows that

pK ,m( f ) = sup
α∈NN

0

sup
x∈K

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤ sup
α∈NN

0

sup
x∈RN

|∂α( f g)(x)| exp
(

−mϕ∗
ω

( |α|
m

))

exp(ω(x))

= qm,1( f g) < ∞.

Since K is arbitrary, we can conclude that f ∈ Eω(RN ). ��
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Lemma 4.2 Let ω be a non-quasianalytic weight function. Let ρ ∈ Dω(RN ) so that
suppρ ⊆ B1(0) and {x j } j∈N ⊂ R

N be a sequence such that |x j | ≥ |x j−1| + 2 for
every j ≥ 2 and |x1| > 1. If we set

g(x) :=
∑

j∈N
ρ(x − x j ) exp(− jω(x j )), x ∈ R

N , (4.1)

then g ∈ Sω(RN ).

Proof Since the functions of the sequence {ρ(· − x j )} j∈N have disjoint supports, the
series on the right of (4.1) converges in C∞(RN ) and so, the function g on the left
of (4.1) belongs to C∞(RN ). On the other hand, the property (γ ) of ω implies that
exp(ω(x)) ≥ exp(a)(1 + |x |)b for every x ∈ R

N . Therefore, g ∈ S(RN ), see [13,
Proposition 5, Chap. 4 §11]. In order to conclude the proof, we proceed as follows.

Fix λ,μ > 0 and x ∈ R
N . Then either x ∈ B1(xl) for some j ∈ N or x /∈ B1(xl)

for all l ∈ N. Accordingly, we have for every α ∈ N
N
0 that either

∂αg(x) = exp(− jω(x j ))∂
αρ(x − x j ),

or ∂αg(x) = 0. Since ρ ∈ Dω(RN ), it follows for every α ∈ N
N
0 that

exp(μω(x))|∂αg(x)| ≤
≤ exp(μω(x)) exp(− jω(x j )) exp

(

−μKω(x − x j ) + λϕ∗
ω

( |α|
λ

))

qλ,Kμ(ρ),

(4.2)

where K is the constant appearing in the property (α) of ω. But, we have

ω(x) = ω((x − x j ) + x j ) ≤ K (ω(x − x j ) + ω(x j ) + 1).

So, by (4.2) we obtain for every α ∈ N
N
0 that

exp(μω(x))|∂αg(x)| ≤ eK exp(Kμω(x − x j ) + Kμω(x j ))

× exp(− jω(x j )) exp

(

−μKω(x − x j ) + λϕ∗
ω

( |α|
λ

))

qλ,Kμ(ρ)

= eK exp((Kμ − j)ω(x j )) exp

(

λϕ∗
ω

( |α|
λ

))

qλ,Kμ(ρ)

and hence,

exp

(

−λϕ∗
ω

( |α|
λ

))

exp(μω(x))|∂αg(x)| ≤ eK exp((Kμ − j)ω(x j ))qλ,Kμ(ρ).

Since exp((Kμ − j)ω(x j )) ≤ 1 whenever j ≥ Kμ and x is arbitrary, it follows that

qλ,μ(g) ≤ eK max
j<Kμ

exp((Kμ − j)ω(x j ))qλ,Kμ(ρ) < ∞.
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But, λ and μ are also arbitrary. So, we can conclude that g ∈ Sω(RN ). ��
Remark 4.3 Let ω be a non-quasianalytic weight function. Let ρ ∈ Dω(RN ) so that
suppρ ⊆ B1(0) and {x j } j∈N ⊂ R

N be a sequence such that |x j | ≥ |x j−1| + 2 for
every j ≥ 2 and |x1| > 1. If h ∈ Sω(RN ) and g(x) := ∑

j∈N h(x j )ρ(x− x j ) for each

x ∈ R
N , then g ∈ Sω(RN ). The proof follows by arguing as in the proof of Lemma

4.2, after having observed that supx∈RN |h(x)| exp( jω(x)) < ∞ for each j ∈ N.

We can now state and prove thatOM,ω(RN ) is the space of multipliers of Sω(RN ).

Theorem 4.4 Let ω be a non-quasianalytic weight function and f ∈ C∞(RN ). Then
the following properties are equivalent.

(1) f ∈ OM,ω(RN ).
(2) For every g ∈ Sω(RN ) we have f g ∈ Sω(RN ).

Moreover, if f ∈ OM,ω(RN ), then the linear operator M f : Sω(RN ) → Sω(RN )

defined by M f (g) := f g, for g ∈ Sω(RN ), is continuous.

Proof (1)⇒(2). Fix g ∈ Sω(RN ). Then f g ∈ C∞(RN ). Moreover, for every α ∈ N
N
0

and x ∈ R
N we have

|∂α( f g)(x)| ≤
∑

γ≤α

(
α

γ

)

|∂γ f (x)||∂α−γ g(x)|. (4.3)

Fixed m ∈ N, let M ∈ N so that M ≥ Lm, where L ≥ 1 is the constant appearing in
formula (2.2). Since f ∈ OM,ω(RN ), there exist n ∈ N and C > 0 such that for every
γ ∈ N

N
0 and x ∈ R

N we have

|∂γ f (x)| ≤ C exp

(

nω(x) + Mϕ∗
ω

( |γ |
M

))

. (4.4)

On the other hand, g ∈ Sω(RN ). So, setting M ′ := max{M, n+m} and recalling that
ϕ∗

ω(t)/t is an increasing function in (0,∞), we have for every δ ∈ N
N
0 and x ∈ R

N

that

|∂δg(x)| ≤ qM ′,M ′(g) exp

(

M ′ϕ∗
ω

( |δ|
M ′

)

− M ′ω(x)

)

≤ qM ′,M ′(g) exp

(

Mϕ∗
ω

( |δ|
M

)

− M ′ω(x)

)

. (4.5)

By combining (4.3), (4.4) and (4.5), we obtain for every α ∈ N
N
0 and x ∈ R

N that

exp(mω(x))|∂α( f g)(x)| ≤
≤

∑

γ≤α

(
α

γ

)

C exp((n + m)ω(x)) exp

(

Mϕ∗
ω

( |γ |
M

))

|∂α−γ g(x)|
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≤ C
∑

γ≤α

(
α

γ

)

exp((n + m)ω(x)) exp

(

Mϕ∗
ω

( |γ |
M

))

qM ′,M ′(g)

× exp

(

Mϕ∗
ω

( |α − γ |
M

)

− M ′ω(x)

)

≤ CqM ′,M ′(g) exp((n + m − M ′)ω(x))
∑

γ≤α

(
α

γ

)

exp

(

Mϕ∗
ω

( |γ |
M

))

×

× exp

(

Mϕ∗
ω

( |α − γ |
M

))

.

Using inequality (2.7) and taking in mind that supx∈RN exp((n+m−M ′)ω(x)) < ∞,
it follows for every α ∈ N

N
0 and x ∈ R

N that

exp(mω(x))|∂α( f g)(x)| ≤ CqM ′,M ′(g)2|α| exp
(

Mϕ∗
ω

( |α|
M

))

. (4.6)

Since M ≥ mL , applying formula (2.6) we obtain via (4.6) that for every α ∈ N
N
0

and x ∈ R
N

exp(mω(x))|∂α( f g)(x)| ≤ CqM ′,M ′(g) exp

(

mϕ∗
ω

( |α|
m

))

and so

qm,m( f g) ≤ C exp(mL)qM ′,M ′(g) < ∞. (4.7)

The thesis follows from the arbitrarity of m ∈ N.
(2)⇒(1). We first observe that by Lemma 4.1 we have f ∈ Eω(RN ). We now

suppose that f /∈ OM,ω(RN ). Then by Proposition 3.3(1) there exists m ∈ N such
that for each C, R > 0 and n ∈ N there exist x ∈ R

N with |x | > R and α ∈ N
N
0 such

that

|∂α f (x)| ≥ C exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

.

So, we can choose two sequences {α j } j∈N ⊂ N
N
0 and {x j } j∈N ⊂ R

N with |x j+1| >

|x j | + 2 for all j ∈ N and |x1| > 1 such that

|∂α j f (x j )| ≥ exp

(

jω(x j ) + mϕ∗
ω

( |α j |
m

))

. (4.8)

Let ρ ∈ Dω(RN ) ⊂ Sω(RN ) such that supp ρ ⊆ B1(0) and ρ ≡ 1 on Br (0) for some
0 < r < 1. For every x ∈ R

N let

g(x) :=
∑

j∈N
ρ(x − x j ) exp(− jω(x j )).
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Then by Lemma 4.2 we have g ∈ Sω(RN ) and so, qm,m( f g) < ∞. In particular, we
have that

sup
j∈N

|∂α j ( f g)(x j )| exp
(

mω(x j ) − mϕ∗
ω

( |α j |
m

))

≤ qm,m( f g) < ∞. (4.9)

On the other hand, for every j ∈ N we have g ≡ exp(− jω(x j )) in Br (x j ). Accord-
ingly, for every j ∈ N, x ∈ Br (x j ) and α ∈ N

N
0 we have

∂α( f g)(x) = exp(− jω(x j ))∂
α f (x).

Therefore, by (4.8) and (4.9) it follows that

qm,m( f g) ≥ sup
j∈N

|∂α j f (x j )| exp
(

mω(x j ) − mϕ∗
ω

( |α j |
m

))

exp(− jω(x j ))

≥ sup
j∈N

exp(mω(x j )),

thereby implying that sup j∈N exp(mω(x j )) < ∞. But, lim j→∞ exp(mω(x j )) = +∞
and hence, sup j∈N exp(mω(x j )) = ∞. This is a contradiction.

Fix any f ∈ OM,ω(RN ). Then the operator M f : Sω(RN ) → Sω(RN ) is well
defined by the proof above. Actually, M f is also continuous as follows directly from
(4.7). ��
Remark 4.5 (a) Let f ∈ Sω(RN ). Then f g ∈ Sω(RN ) for every g ∈ Sω(RN ). So, by
Theorem 4.4 it follows that f ∈ OM,ω(RN ).

(b) Let f ∈ Eω(RN ). Then f g ∈ Sω(RN ) for every g ∈ Sω(RN ) if and only if
(∂α f )g ∈ Sω(RN ) for every g ∈ Sω(RN ) and α ∈ N

N
0 .

Indeed, the condition on the right clearly implies the condition on the left. Con-
versely, the assumption f g ∈ Sω(RN ) for every g ∈ Sω(RN ) implies for every
j = 1, . . . , N that

(∂ j f )g = ∂ j ( f g) − f (∂ j g) ∈ Sω(RN ).

So, proceeding by induction the result follows.
Consequently, by Theorem 4.4 we can conclude that for fixed f ∈ OM,ω(RN )

and α ∈ N
N
0 the function ∂α f ∈ OM,ω(RN ) too, and the linear operator M∂α f :

Sω(RN ) → Sω(RN ) is continuous.

Finally, we show that OM,ω(RN ) is also the space of multipliers of S ′
ω(RN ).

Theorem 4.6 Let ω be a non-quasianalytic weight function and f ∈ Eω(RN ). Then
the following properties are equivalent.

(1) f ∈ OM,ω(RN ).
(2) For every T ∈ S ′

ω(RN ) we have f T ∈ S ′
ω(RN ).
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Moreover, if f ∈ OM,ω(RN ), then the linear operator M f : S ′
ω(RN ) → S ′

ω(RN )

defined by M f (T ) := f T , for T ∈ S ′
ω(RN ), is continuous.

Proof (1)⇒(2). FixT ∈ S ′
ω(RN ). ByTheorem4.4 the linear operatorM f : Sω(RN ) →

Sω(RN ) given byM f (g) = f g, for g ∈ Sω(RN ), is continuous and so, the linear func-
tional T ◦ M f : Sω(RN ) → C is also continuous. Accordingly, T ◦ M f ∈ S ′

ω(RN ).
But, for every g ∈ Sω(RN ) we have

(T ◦ M f )(g) = 〈T , M f (g)〉 = 〈T , f g〉 = 〈 f T , g〉.

Therefore, f T = T ◦ M f ∈ S ′
ω(RN ). This completes the proof.

(2)⇒(1). Suppose for every T ∈ S ′
ω(RN ) that f T ∈ S ′

ω(RN ). Then for a fixed
g ∈ Sω(RN ) the linear functional L : S ′

ω(RN ) → C defined by L(T ) := 〈 f T , g〉, for
T ∈ S ′

ω(RN ), is continuous and so, L ∈ S ′′
ω(RN ). Since Sω(RN ) is reflexive, there

exists h ∈ Sω(RN ) such that L(T ) = 〈T , h〉 for every T ∈ S ′
ω(RN ), i.e., 〈 f T , g〉 =

〈T , h〉 for every T ∈ S ′
ω(RN ). Accordingly, for every T ∈ Dω(RN ) ⊆ S ′

ω(RN ) we
have 〈 f T , g〉 = 〈T , h〉. Since for every T ∈ Dω(RN ) we have 〈 f T , g〉 = 〈T , f g〉
and Dω(RN ) is a dense subspace of Sω(RN ), it follows that f g = h ∈ Sω(RN ). So,
as g ∈ Sω(RN ) is arbitrary, by Theorem 4.4 we can conclude that f ∈ OM,ω(RN ).

Fix any f ∈ OM,ω(RN ). Then for every g ∈ Sω(RN ) and T ∈ S ′
ω(RN ) we have

〈 f T , g〉 = 〈T , f g〉.

This means that the linear operatorM f : S ′
ω(RN ) → S ′

ω(RN ) is the transpose of the
continuous linear operator M f : Sω(RN ) → Sω(RN ). Therefore, the linear operator
M f : S ′

ω(RN ) → S ′
ω(RN ) is necessarily continuous. ��

5 Other topologies onOM,!(R
N)

In this section we show that the space OM,ω(RN ) can be naturally endowed with
other lc-topologies. We also compare these lc-topologies with each other and with the
projective lc-topology defined on OM,ω(RN ) by the spectrum {∪∞

n=1Om
n,ω(RN )}m∈N.

We begin by giving another useful chartacterization of the space OM,ω(RN ).

Theorem 5.1 Let ω be a non-quasianalytic weight function and f ∈ C∞(RN ). Then
the following properties are equivalent.

(1) f ∈ OM,ω(RN ).
(2) For every g ∈ Sω(RN ) and m ∈ N we have

qm,g( f ) := sup
α∈NN

0

sup
x∈RN

|g(x)||∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

< ∞. (5.1)

Proof (1)⇒(2). Since f ∈ OM,ω(RN ), we have for every m ∈ N that there exist
C > 0 and n ∈ N such that for every α ∈ N

N
0 and x ∈ R

N the following inequality is
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satisfied

|∂α f (x)| ≤ C exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

.

Therefore, for any fixed g ∈ Sω(RN ), it follows for everym ∈ N, α ∈ N
N
0 and x ∈ R

N

that

|g(x)||∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤ C exp(nω(x))|g(x)|,

with n ∈ N depending only of m. This implies that

qm,g( f ) ≤ C sup
x∈RN

exp(nω(x))|g(x)| < ∞.

Since g ∈ Sω(RN ) is arbitrary, the thesis follows.
(2)⇒(1). We first show that f ∈ Eω(RN ). So, fixed any compact subset K of RN ,

let g ∈ Dω(RN ) such that g ≡ 1 on K . Then it follows for every m ∈ N that

pK ,m( f ) = sup
x∈K

sup
α∈NN

0

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤ sup
x∈K

sup
α∈NN

0

|g(x)||∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤ qm,g( f ) < ∞. (5.2)

Since K is an arbitrary compact subset of RN , we can conclude that f ∈ Eω(RN ).
Suppose that f /∈ OM,ω(RN ). Since f ∈ Eω(RN ), it follows from Proposition

3.3(1) that there exists m ∈ N such that for each C, R > 0 and n ∈ N there exist
x ∈ R

N with |x | > R and α ∈ N
N
0 such that

|∂α f (x)| ≥ C exp

(

nω(x) + mϕ∗
ω

( |α|
m

))

.

So, we can choose two sequences {α j } j∈N ⊂ N
N
0 and {x j } j∈N ⊂ R

N with |x j+1| >

|x j | + 2 for all j ∈ N and |x1| > 1 such that

|∂α j f (x j )| ≥ exp

(

jω(x j ) + mϕ∗
ω

( |α j |
m

))

. (5.3)

Next, let ρ ∈ Dω(RN ) ⊂ Sω(RN ) such that supp ρ ⊆ B1(0) and ρ ≡ 1 on Br (0) for
some 0 < r < 1. For every x ∈ R

N let

g(x) :=
∑

j∈N
ρ(x − x j ) exp(− jω(x j )).
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Then by Lemma 4.2 we have g ∈ Sω(RN ) and hence, it necessarily holds that
qm,g( f ) < ∞. In particular, we have that

sup
j∈N

|g(x j )||∂α j f (x j )| exp
(

mω(x j ) − mϕ∗
ω

( |α j |
m

))

≤ qm,g( f ) < ∞. (5.4)

But, g(x j ) = exp(− jω(x j )) for every j ∈ N. So, it follows by (5.3) and (5.4) that

qm,g( f ) ≥ sup
j∈N

exp(− jω(x j )|∂α j f (x j )| exp
(

mω(x j ) − mϕ∗
ω

( |α j |
m

))

≥ sup
j∈N

exp(mω(x j )),

thereby implying that sup j∈N exp(mω(x j )) < ∞. This is a contradiction because
lim j→∞ exp(mω(x j )) = ∞. Hence, f necessarily belongs to OM,ω(RN ). ��

Theorem5.1 implies that the set {qm,g}m∈N,g∈Sω(RN ) forms a fundamental systemof
norms onOM,ω(RN ). Denote by τ theHausdorff lc-topology onOM,ω(RN ) generated
by {qm,g}m∈N,g∈Sω(RN ).

We now collect some properties of the Hausdorff lc-space (OM,ω(RN ), τ ).

Theorem 5.2 Let ω be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) The inclusion

(OM,ω(RN ), τ ) ↪→ Eω(RN ) (5.5)

is continuous with dense range.
(2) (OM,ω(RN ), τ ) is a complete lc-space.

Proof (1) The continuity of the inclusion (OM,ω(RN ), τ ) ↪→ Eω(RN ) follows by
repeating the arguments at the beginning of the proof of Theorem 5.1 (2)⇒(1), i.e., of
(5.2). On the other hand, the facts that the inclusion Dω(RN ) ↪→ Eω(RN ) has dense
range (see Remark 2.6(3)) and Dω(RN ) ⊆ OM,ω(RN ) (see Remark 3.2(1)) clearly
imply that the inclusion (OM,ω(RN ), τ ) ↪→ Eω(RN ) has dense range too.

(2) Let { fi }i∈I be a Cauchy net in (OM,ω(RN ), τ ). Since the inclusion (OM,ω

(RN ), τ ) ↪→ C∞(RN ) is continuous as it is easy to prove, it follows that { fi }i∈I is
also a Cauchy net inC∞(RN ). But,C∞(RN ) is a Fréchet space and hence, a complete
lc-space. So, there exists f ∈ C∞(RN ) such that fi → f in C∞(RN ). We claim that
fi → f in (OM,ω(RN ), τ ). To see this, we fix g ∈ Sω(RN ), m ∈ N and ε > 0. Since
{ fi }i∈I is a Cauchy net in (OM,ω(RN ), τ ), there exists i0 ∈ I such that for every
i, i ′ ≥ i0 we have

qm,g( fi − fi ′) = sup
x∈RN

sup
α∈Nn

0

|g(x)||∂α( fi − fi ′)(x)| exp
(

−mϕ∗
ω

( |α|
m

))

< ε,
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i.e., for every i, i ′ ≥ i0, α ∈ N
N
0 and x ∈ R

N we have

|g(x)||∂α( fi − fi ′)(x)| < ε exp

(

mϕ∗
ω

( |α|
m

))

.

Since fi → f in C∞(RN ) implies that ∂α fi → ∂α f pointwise in R
N for every

α ∈ N
N
0 , by letting i

′ to infty it follows for every i ≥ i0, α ∈ N
N
0 and x ∈ R

N that

|g(x)||∂α( fi − f )(x)| < ε exp

(

mϕ∗
ω

( |α|
m

))

and so,

|g(x)||∂α f (x)| ≤ |g(x)||∂α( f − fi0)(x)| + |g(x)||∂α fi0(x)|
< ε exp

(

mϕ∗
ω

( |α|
m

))

+ |g(x)||∂α fi0(x)|.

Accordingly, we have for every i ≥ i0 that

qm,g( fi − f ) ≤ ε and qm,g( f ) ≤ ε + qm,g( fi0).

Since g ∈ Sω(RN ) and m ∈ N are arbitrary, this shows via Theorem 5.1 that f ∈
OM,ω(RN ) and that fi → f in (OM,ω(RN ), τ ). ��

We recall that the sequence {∪∞
n=1Om

n,ω(RN )}m∈N of (LB)-spaces forms a projective
spectrum and OM,ω(RN ) = ∩∞

m=1 ∪∞
n=1 Om

n,ω(RN ). We denote by t the projective
topology on the space OM,ω(RN ) defined by {∪∞

n=1Om
n,ω(RN )}m∈N. The next aim is

to compare the topology τ with the topology t . To this end, we introduce the following
spaces.

Definition 5.3 Let ω be a non-quasianalytic weight function. Form ∈ Nwe define the
space

Om
sω(RN ) :=

{
f ∈ C∞(RN ) : ∀g ∈ Sω(RN ) qm,g( f ) < ∞

}
(5.6)

and endow itwith the lc-topology τm generated by the systemof norms {qm,g}g∈Sω(RN ).

It is straightforward to verify that the following topological equality holds

(OM,ω(RN ), τ ) = ∩∞
m=1(Om

sω(RN ), τm), (5.7)

when the space on the right hand side is endowed with the corresponding projective
limit topology. Moreover, the following results hold.

Proposition 5.4 Let ω be a non-quasianalytic weight function and m ∈ N. Then the
following properties are satisfied.
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(1) The inclusion ∪∞
n=1Om

n,ω(RN ) ↪→ (Om
sω(RN ), τm) is well-defined and continuous.

(2) ∪∞
n=1Om

n,ω(RN ) = Om
sω(RN ) algebraically. Moreover, the spaces ∪∞

n=1Om
n,ω(RN )

and (Om
sω(RN ), τm) have the same bounded sets.

(3) (Om
sω(RN ), τm) is a complete lc-space.

Proof (1) Fix g ∈ Sω(RN ). Then for each n ∈ N there exists cn > 0 such that for
every x ∈ R

N we have

|g(x)| ≤ cn exp(−nω(x)). (5.8)

This implies for every n ∈ N that the inclusion

Om
n,ω(RN ) ↪→ Om

sω(RN )

is well-defined and continuous. Indeed, for a fixed n ∈ N, we obtain via (5.8) that

qm,g( f ) = sup
x∈RN

sup
α∈NN

0

|g(x)||∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤ cn sup
x∈RN

sup
α∈NN

0

|∂α f (x)| exp
(

−nω(x) − mϕ∗
ω

( |α|
m

))

= cnrm,n( f ).

Since g ∈ Sω(RN ) is arbitrary, the continuity of the inclusionOm
n,ω(RN ) ↪→ Om

sω(RN )

follows.
Since ∪∞

n=1Om
n,ω(RN ) is an (LB)-space, we deduce that the inclusion ∪∞

n=1Om
n,ω

(RN ) ↪→ (Om
sω(RN ), τm) is continuous.

(2)By (1) above it suffices to showonly that every bounded subset of (Om
sω (RN ), τm)

is also a bounded subset of ∪∞
n=1Om

n,ω(RN ). To this end, we fix a bounded subset B of
(Om

sω(RN ), τm). We would show that there exists n0 ∈ N such that sup f ∈B rm,n0( f ) <

∞. If this is not the case, then sup f ∈B rm,n( f ) = ∞ for every n ∈ N. To get a
contradiction, we proceed as follows.

For each j ∈ N let K j := B j (0)×{α ∈ N
N
0 : |α| ≤ j}. Then∪ j∈NK j = R

N ×N
N
0 .

On the other hand, taking in account that the function g0(x) := exp(−|x |2), for
x ∈ R

N , belongs to Sω(RN ) we have for every f ∈ B and n, j ∈ N that

sup
(x,α)∈K j

|∂α f (x)| exp
(

−nω(x) − mϕ∗
ω

( |α|
m

))

≤ sup
(x,α)∈K j

exp(|x |2 − nω(x))|∂α f (x)|g0(x) exp
(

−mϕ∗
ω

( |α|
m

))

≤ k jqm,g0( f ),

where k j := sup(x,α)∈K j
exp(|x |2 − nω(x)) < ∞, and hence

sup
f ∈B

sup
(x,α)∈K j

|∂α f (x)| exp
(

−nω(x) − mϕ∗
ω

( |α|
m

))

< ∞.
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Since sup f ∈B rm,n( f ) = ∞, an argument by induction then yields that there exist a
sequence { fn}n∈N ⊆ B and a strictly increasing sequence { jn}n∈N of positive integers

such that for every n ∈ N there exists some point (xn, αn) ∈ ◦
K jn+1 \K jn−1 for which

|∂αn fn(xn)| exp
(

−nω(xn) − mϕ∗
ω

( |α|
m

))

> n. (5.9)

Now, we choose a function ρ ∈ Dω(RN ) such that suppρ ⊆ B1(0) and ρ(0) = 1. We
define

g(x) :=
∞∑

k=1

exp(−kω(x))ρ(x − xk), x ∈ R
N . (5.10)

Then by Lemma 4.2 we have g ∈ Sω(RN ). In particular, g(xn) = exp(−nω(xn)) for
every n ∈ N. Hence, by (5.9) it follows for every n ∈ N that

qm,g( fn) ≥ g(xn)|∂αn fn(xn)| exp
(

−mϕ∗
ω

( |αn|
m

))

≥ exp(−nω(xn))|∂αn fn(xn)| exp
(

−mϕ∗
ω

( |αn|
m

))

> n.

This shows that sup f ∈B qm,g( f ) = ∞, which is a contradiction as B is a bounded
subset of (Om

sω(RN ), τ ) and hence sup f ∈B qm,g( f ) < ∞.
(3) follows as in the proof of Theorem 5.2(2). ��
Let X = ind n→Xn be an (LB)-space with canonical inclusions jn : Xn → X for

each n ∈ N. Recall that X is called regular if every bounded subset of X is contained
and bounded in a step Xm for some m ∈ N. Every complete (LB)-space is regular,
[17, (5) p.225]. Accordingly, Proposition 3.5 implies that the space ∪∞

n=1Om
n,ω(RN )

is a regular (LB)-space for each m ∈ N. On the other hand, Proposition 5.4 yields
another proof of the regularity of the (LB)-spaces ∪∞

n=1Om
n,ω(RN ).

Proposition 5.5 Let ω be a non-quasianalytic weight function and m ∈ N. Then
∪∞
n=1Om

n,ω(RN ) is a regular (LB)-space.Moreover,∪∞
n=1Om

n,ω(RN ) is the bornological
space associated with the space (Om

sω(RN ), τm).

Proof The result follows from Proposition 5.4(2). Indeed, in the proof of Proposition
5.4(2) it has been established also that every bounded subset of (Om

sω(RN ), τm) is
contained and bounded in the Banch space Om

n,ω(RN ) for some n ∈ N. ��
Further immediate consequences of Proposition 5.4 are the following results.

Proposition 5.6 Let ω be a non-quasianalytic weight function. Then the inclusion

(OM,ω(RN ), t) ↪→ (OM,ω(RN ), τ ) (5.11)
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is continuous, i.e., the topology τ is coarser than the topology t. Moreover, the spaces
(OM,ω(RN ), t) and (OM,ω(RN ), τ ) have the same bounded subsets.

Proof Since

(OM,ω(RN ), t) = proj m← ∪∞
n=1 Om

n,ω(RN )

and (OM,ω(RN ), τ ) = proj m←(Om
sω(RN ), τm)),

the result follows immediately from Proposition 5.4(1)-(2). ��
Proposition 5.7 Let ω be a non-quasianalytic weight function. Then the inclusion

Sω(RN ) ↪→ (OM,ω(RN ), τ ) (5.12)

is continuous with dense range.

Proof The result immediately follows from Proposition 5.6, Theorems 3.8 and 3.9. ��
Let X be a Hausdorff lc-space and �X be a system of continuous seminorms gen-

erating the topology of X . Then the strong operator topology τs in the space L(X)

of all continuous linear operators from X into itself is determined by the family of
seminorms qx (S) := q(Sx) (S ∈ L(X)) for each x ∈ X and q ∈ �X . In such a
case we write Ls(X). Denoted by B(X) the collection of all bounded subsets of X ,
the topology τb of uniform convergence on bounded sets is defined in L(X) by the
seminorms qB(S) := supx∈B q(Sx) (S ∈ L(X)) for each B ∈ B(X) and q ∈ �X . In
such a case we write Lb(X).

By Theorem 4.4 the spaceOM,ω(RN ) can be identifiedwith the spaceM(Sω(RN ))

of all multipliers on Sω(RN ) via the map M : OM,ω(RN ) → M(Sω(RN )) defined
by M( f ) := M f for each f ∈ OM,ω(RN ). Since M(Sω(RN )) is a subspace of
L(Sω(RN )), the space OM,ω(RN ) (via the map M) can be then endowed with either
the topology τb induced by Lb(Sω(RN )) or the topology τs induced by Ls(Sω(RN )).
In the next result we compare the three topologies τb, τs and τ .

To this end, we first show the following variant of Lemma 4.2.

Lemma 5.8 Let ω be a non-quasianalytic weight function. Let h : RN → R be a
non-negative function satisfying the condition

∀λ > 0 lim|x |→∞ exp(λω(x))h(x) = 0. (5.13)

Then there exists g ∈ Sω(RN ) such that

∀x ∈ R
N h(x) ≤ g(x). (5.14)

Proof Let ρ ∈ Dω(RN ) such that ρ ≥ 0, ρ ≡ 1 on B1(0) and supp ρ ⊆ B1(0). Let
{x j } j∈N ⊆ R

N be a sequence satisfying the following properties: lim j→∞ |x j | = ∞;
there exists H ∈ N such that |{ j ∈ N : x ∈ B2(x j )}| ≤ H for every x ∈ R

N ; for any
x ∈ R

N there exists j ∈ N such that x ∈ B1(x j ).
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Let

a j := sup
x∈B2(x j )

h(x), j ∈ N, (5.15)

and

g(x) :=
∑

j∈N
a jρ(x − x j ), x ∈ R

N , (5.16)

where the series on the right of (5.16) is a finite sum for every x ∈ R
N .

For any fixed x ∈ R
N , let j ∈ N such that x ∈ B1(x j ). Then g(x) ≥ a j ≥ h(x).

This shows that h(x) ≤ g(x) for all x ∈ R
N . So, it remains to establish that g ∈

Sω(RN ).
Since the property (γ ) of ω implies that exp(ω(x)) ≥ exp(a)(1 + |x |)b for every

x ∈ R
N , by [9, Lemma 3.6, p.127] we can conclude that g ∈ S(RN ). In order to

conclude the proof, we proceed as follows.
Fix λ,μ > 0 and x ∈ R

N . Then we have for every α ∈ N
N
0 that

∂αg(x) =
∑

x∈B2(x j )

a j∂
αρ(x − x j ),

where the set J (x) := { j ∈ N : x ∈ B2(x j )} has cardinality less or equal to that of
H , with H indipendent of x . Since ρ ∈ Dω(RN ), it follows for every α ∈ N

N
0 that

exp(μω(x))|∂αg(x)| ≤
≤ H sup

j∈J (x)
a j exp(μω(x)) exp

(

−μKω(x − x j ) + λϕ∗
ω

( |α|
λ

))

qλ,μK (ρ),

(5.17)

where K is the constant appearing in the property (α) of ω. On the other hand, by
(5.13) there exists C > 0 such that h(x) ≤ C exp(−μK 2ω(x)) for all x ∈ R

N and
so, we have for every j ∈ N that

a j = sup
x∈B2(x j )

h(x) = sup
y∈B2(0)

h(y + x j ) ≤ C sup
y∈B2(0)

exp(−μK 2ω(y + x j )).

(5.18)

But, the following inequalities are satisfied

ω(x) = ω((x − x j ) + x j ) ≤ K (ω(x − x j ) + ω(x j ) + 1)

and

ω(x j ) = ω((y + x j ) − y) ≤ K (ω(y + x j ) + ω(y) + 1).
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Accordingly, by (5.17) and (5.18) it follows for every α ∈ N
N
0 that

exp(μω(x))|∂αg(x)| ≤HC sup
j∈J (x)

sup
y∈B2(0)

exp(K 2μ(ω(y) + 1)) exp(−Kμω(x j ))

× eμK exp(μKω(x − x j )) exp(μKω(x j )) exp
(−μKω(x − x j )

+λϕ∗
ω

( |α|
λ

))

qλ,μK (ρ)

= HCeμK sup
y∈B2(0)

exp(K 2μ(ω(y) + 1)) exp

(

λϕ∗
ω

( |α|
λ

))

qλ,μK (ρ)

and hence,

exp

(

−λϕ∗
ω

( |α|
λ

))

exp(μω(x))|∂αg(x)| ≤ HCeμK sup
y∈B2(0)

exp(K 2μ(ω(y) + 1))qλ,μK (ρ).

Since D := supy∈B2(0)
exp(K 2μ(ω(y)+ 1)) < ∞ is a constant independent of x and

x is arbitrary, we can conclude that

qλ,μ(g) ≤ HCDeμKqλ,μK (ρ) < ∞.

But, λ and μ are also arbitrary. So, this implies that g ∈ Sω(RN ). ��
Theorem 5.9 Let ω be a non-quasianalytic weight function. Then the inclusions

(OM,ω(RN ), τ ) ↪→ (OM,ω(RN ), τb) ↪→ (OM,ω(RN ), τs) (5.19)

are continuous. Moreover, the spaces (OM,ω(RN ), τ ), (OM,ω(RN ), τb) and
(OM,ω(RN ), τs) have the same bounded subsets.

Proof Since τs ⊆ τb, it suffices to show that τb ⊆ τ . To this end, let W be a 0-
neighbourhood of Lb(Sω(RN )). Then there exist a 0-neighbourhood V of Sω(RN )

and a bounded subset B of Sω(RN ) such that

{T ∈ L(Sω(RN )) : T (B) ⊆ V } ⊆ W .

We can suppose that V = {h ∈ Sω(RN ) : qm,n( f ) ≤ ε} for some m, n ∈ N and
ε > 0. To conclude the proof, we have to show that there exists a 0-neighbourhoodU
of (OM,ω(RN ), τ ) such that f g ∈ V for all f ∈ U and g ∈ B. To this end, let M ∈ N

such that M ≥ Lm and ε′ > 0 such that ε′ < εe−mL , where L ≥ 1 is the constant
appearing in formula (2.5). Then the setU of all functions f ∈ OM,ω(RN ) satisfying
the condition

sup
x∈RN

sup
γ,δ∈NN

0

exp

(

nω(x) − Mϕ∗
ω

( |γ + δ|
M

))

|∂γ f (x)||∂δg(x)| ≤ ε′, g ∈ B,

(5.20)
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is a 0-neighbourhood of (OM,ω(RN ), τ ) for which f g ∈ V for all f ∈ U and g ∈ B.
Indeed, for fixed f ∈ U and g ∈ B, we have for every α ∈ N

N
0 and x ∈ R

N that

|∂α( f g)(x)| ≤
∑

γ≤α

(
α

γ

)

|∂γ f (x)||∂α−γ g(x)| ≤ ε′ ∑

γ≤α

(
α

γ

)

exp

(

−nω(x) + Mϕ∗
ω

( |α|
M

))

≤ ε′2|α| exp(−nω(x)) exp

(

Mϕ∗
ω

( |α|
M

))

≤ ε′emL exp(−nω(x)) exp

(

mϕ∗
ω

( |α|
m

))

≤ ε exp

(

−nω(x) + mϕ∗
ω

( |α|
m

))

.

after having used inequality (2.6). Therefore, qm,n( f g) ≤ ε and so f g ∈ V .
It remains to show thatU is a 0-neighbourhood of (OM,ω(RN ), τ ). To see this, we

define

h(x) := exp(nω(x)) sup
g∈B

sup
δ∈NN

0

exp

(

−Mϕ∗
ω

( |δ|
M

))

|∂δg(x)|, x ∈ R
N .

Since B a bounded subset of Sω(RN ), we have for every λ ≥ 0 and x ∈ R
N that

exp(λω(x))h(x) ≤ exp((λ + n)ω(x)) sup
g∈B

sup
δ∈NN

0

exp

(

−Mϕ∗
ω

( |δ|
M

))

|∂δg(x)|

≤ sup
g∈B

qM,λ+n(g) < ∞.

Accordingly, h is a well-defined non-negative function on R
N satisfying condition

(5.13). So, by Lemma 5.8 there exists g1 ∈ Sω(RN ) such that h(x) ≤ g1(x) for all
x ∈ R

N . Then U ′ := { f ∈ OM,ω(RN ) : qM,g1( f ) ≤ ε′} is a 0-neighbourhood of
(OM,ω(RN ), τ ). Moreover, for fixed f ∈ U ′ and g ∈ B, we have for every γ, δ ∈ N

N
0

that

|∂γ f (x)||∂δg(x)| ≤ |∂γ f (x)|g1(x) exp(−nω(x)) exp

(

Mϕ∗
ω

( |δ|
M

))

≤ ε′ exp
(

Mϕ∗
ω

( |γ |
M

))

exp(−nω(x)) exp

(

Mϕ∗
ω

( |δ|
M

))

= ε′ exp(−nω(x)) exp

(

Mϕ∗
ω

( |γ |
M

)

+ Mϕ∗
ω

( |δ|
M

))

≤ ε′ exp(−nω(x)) exp

(

Mϕ∗
ω

( |γ + δ|
M

))

.

Since f ∈ U ′ and g ∈ B are arbitrary, this implies that U ′ ⊆ U . So, U is a 0-
neighbourhood of (OM,ω(RN ), τ ).
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In order to show that the spaces (OM,ω(RN ), τ ), (OM,ω(RN ), τb) and (OM,ω(RN ), τs)

have the same bounded sets, it suffices to prove only that every bounded subset of
(OM,ω(RN ), τs) is also a bounded subset of (OM,ω(RN ), τ ). To this end, we fix a
bounded subset B of (OM,ω(RN ), τs) and suppose that B is not a bounded subset of
(OM,ω(RN ), τ ). Then there exist g ∈ Sω(RN ) and m ∈ N such that

sup
f ∈B

qm,g( f ) = ∞. (5.21)

To get a contradiction, we first observe that the inclusion (OM,ω(RN ), τs) ↪→ Eω(RN )

is also continuous. Indeed, fixed any compact subset K of RN , let h ∈ Dω(RN ) such
that h ≡ 1 on K . Then ∂α( f h) = ∂α f on K for each f ∈ OM,ω(RN ) and α ∈ N

N
0 .

This implies for every f ∈ OM,ω(RN ) and l ∈ N that

pK ,m( f ) = sup
x∈K

sup
α∈NN

0

|∂α f (x)| exp
(

−lϕ∗
ω

( |α|
l

))

= sup
x∈K

sup
α∈NN

0

|∂α( f h)(x)| exp
(

ω(x) − lϕ∗
ω

( |α|
l

))

exp(−ω(x))

≤ CKql,1( f h), (5.22)

where CK := supx∈K exp(−ω(x)) < ∞ is a positive constant depending only on K .
Accordingly, the inclusion (OM,ω(RN ), τs) ↪→ Eω(RN ) is continuous.

Let K j := B j (0)×{α ∈ N
N
0 : |α| ≤ j} for each j ∈ N (so, ∪ j∈NK j = R

N ×N
N
0 ).

The continuity of the inclusion (OM,ω(RN ), τs) ↪→ Eω(RN ) implies for every f ∈ B
and n, j ∈ N that

sup
(x,α)∈K j

|g(x)||∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤

≤ k j sup
(x,α)∈K j

|∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

≤ k j pB j (0),m
( f ),

where k j := supx∈B j (0)
|g(x)| < ∞, and hence

sup
f ∈B

sup
(x,α)∈K j

|g(x)||∂α f (x)| exp
(

−mϕ∗
ω

( |α|
m

))

< ∞.

Taking in mind (5.21), we can then argue by induction to find a sequence { fn}n∈N ⊆ B
and a strictly increasing sequence { jn}n∈N of positive integers such that for every n ∈ N

there exists some point (xn, αn) ∈ ◦
K jn+1 \K jn−1 for which

|g(xn)||∂αn fn(xn)| exp
(

−mϕ∗
ω

( |α|
m

))

> n. (5.23)
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Now, we choose a function ρ ∈ Dω(RN ) such that suppρ ⊆ B1(0) and ρ ≡ 1 on
Br (0) for some 0 < r < 1. We define

g0(x) :=
∞∑

k=1

g(xk)ρ(x − xk), x ∈ R
N . (5.24)

Then by Remark 4.3 we have g0 ∈ Sω(RN ). In particular, g0 ≡ g(xn) in Br (xn) for
each n ∈ N. Accordingly, for every n ∈ N, x ∈ Br (xn) and α ∈ N

N
0 we have

∂α( f g0)(x) = ∂α f (x)g(xn).

Hence, by (5.23) it follows for every n ∈ N that

qm,m( fng0) ≥ |g(xn)||∂αn fn(xn)| exp
(

mω(x) − mϕ∗
ω

( |αn|
m

))

≥ |g(xn)||∂αn fn(xn)| exp
(

−mϕ∗
ω

( |αn|
m

))

> n.

This shows that sup f ∈B qm,m( f g0) = ∞, which is a contradiction because B is a
bounded subset of (OM,ω(RN ), τs). Hence sup f ∈B qm,g( f ) < ∞. ��

Finally, we have

Proposition 5.10 Letω be a non-quasianalytic weight function. Then (OM,ω(RN ), τb)

and its strong dual are nuclear lc-spaces. Moreover, (OM,ω(RN ), τb) is complete.

Proof Since Sω(RN ) is a nuclear Fréchet space by [5, Theorem 3.3], the space
Lb(Sω(RN )) and its strong dual space are nuclear lc-spaces, [12, Corollaire 3, Chap.
II, §2, p.48]. Therefore, by [12, Théorème 9, Chap. II, §2, p.47] (OM,ω(RN ), τb) and
its strong dual are also nuclear lc-spaces.

It is straightforward to show the completeness of (OM,ω(RN ), τb). ��
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