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Abstract
The aim of this paper is to introduce and to study the space Oy, (R"Y) of the multi-
pliers of the space S,,(R") of the w-ultradifferentiable rapidly decreasing functions
of Beurling type. We determine various properties of the space Oy.,,(R"Y). More-
over, we define and compare some lc-topologies of which O/ ., (R") can be naturally
endowed.
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1 Introduction

Classes of ultradifferentiable functions have been intensively investigated since the
20ies of the last century. The subject indeed has a long tradition that goes back to the
work of Gevrey [11]. Along the lines of [11], Komatsu introduced in [16] a way to
define the ultradifferentiable functions. It consists in measuring their growth behaviour
in terms of a weight sequence {M},cn,, Which satisfies certain conditions. Later
Beurling [1] (see also Bjorck [2]) showed that one can also use weight functions
w to measure the smoothness of C°°-functions with compact support by the decay
properties of their Fourier transform. This approach was modified by Braun, Meise,
and Taylor [8], who showed that these classes can be defined by the decay behaviour
of their derivatives by using the Young conjugate of the function z > w(e’). But, in
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general, the classes defined in one way cannot be defined in the other way (see, f.i.,
[6D.

The study of the space of multipliers and convolutors, @y, and O/, of the space
S(RV) of rapidly decreasing functions was started by Schwartz [27]. Since then the
spaces Oy and Oy, attracted the attention of several authors, even recently (see [15,19—
22,24] and the references therein). On the other hand, the space of multipliers and
convolutors was introduced and studied in the setting of other classes of C*°-function
spaces (see, f.i., [10,14,18,25,26,28,29] and the references therein).

In the last years the attention has focused on the study of the space S,,(RY) of
the ultradifferentiable rapidly decreasing functions of Beurling type, as introduced
by Bjorck [2] (see, [3-5], for instance, and the references therein). Inspired by this
line of research and by the previous work, in this paper we introduce and study the
space Oy, (RN) of the slowly increasing functions of Beurling type in the setting
of ultradifferentiable function space as introduced in [8]. In particular, we show that
Owm.»(RY) is the space of the multipliers of the space S, (R") and of its dual S/ (RV).
We also define and compare some locally convex topologies (briefly, Ic) of which
OM,w(RN ) can be naturally endowed.

The paper is organized as follows. Section 2 collects some known definitions and
properties about the weight functions in the sense of Braun, Meise and Taylor [§]
and the space S (RN). Section 3 is devoted to the study of the space (’)M,w(]RN ) and
of related topological properties. In Sect. 3 we also introduce the space Oc ,,(RY)
of the very slowly increasing functions of Beurling type. In particular, we show the
link between these spaces and their topological properties. In a forthcoming paper
we prove, f.i., that O/C’ w(RN ) is the space of convolutors of S(/D(RN ) and the Fourier

exchange between the spaces O/C’w(RN ) and OM,C,)(RN ). In Sect. 4 we show that

Owm .»(RY) is the space of the multipliers of S,,(R"). Finally, in Sect. 5 we study and
compare some lc-topologies of which (’)M,w(RN ) can be endowed in a natural way.

2 Weight functions and the space S, (R")

We begin with the definition of non-quasianalytic weight function in the sense of
Braun-Meise-Taylor [8] suitable for the Beurling case, i.e., we also consider the log-
arithm as a weight function.

Definition 2.1 A non-quasianalytic weight function is a continuous increasing func-
tion w : [0, 00) — [0, co) satisfying the following properties:

(o) there exists K > 1 such that w(2t) < K(1 + w(t)) for every t > 0;
(B) 77 2 di < oo
(y) thereexista € R, b > 0O such that w(¢) > a + blog(1 + ¢t), for every t > 0;

(8) ¢u(t) = woexp(t) is a convex function.

Given a non-quasianalytic weight function @, we can extend it on CV by setting
w(z) = w(|z|) for all z € CV, where | - | denotes the standard euclidean norm.
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Remark 2.2 'We now recall some known facts on weight functions that shall be useful
in the following; the proofs can be found in the literature.

Let w be a non-quasianalytic weight function. Then the following properties are
satisfied.

(1) Condition («) implies for every f1, f > 0 that

w1 +n) < KA+ w(t) + w()). 2.1
Observe that this condition is weaker than subadditivity (i.e., w(t1 + 1) < w(t1) +

w(t2)). The weight functions satisfying («) are not necessarily subadditive in general.
(2) Condition («) implies that there exists L > 1 such that for every r > 0

wlet) < L(1 + o(t)). 2.2)

(3) By condition (8) and the fact that w is an increasing function, we have that
w(t) = o(t) ast — oo. This can be deduced by the fact that for every r > 0 we have

@:/mw(t)ds</°°w(®ds.
t t

t 52 52

Let w be a non-quasianalytic weight function. We define the Young conjugate ¢
of ¢, as the function ¢} : [0, 0c0) — [0, oo) defined by

@i (s) :=sup{st — @u,(1)}, s>0. (2.3)

t>0

There is no loss of generality to assume that w vanishes on [0, 1]. So, ¢ has only
non-negative values. By Fenchel-Moreau Theorem (see, f.i., [7]), we have that ¢} is
convex and increasing, ¢;5(0) = 0 and (¢})* = ¢,. Further useful properties of ¢
are listed in the following lemma, see [8].

Lemma 2.3 Let w: [0, 00) — [0, 00) be a non-quasianalytic weight function. Then
the following properties are satisfied.

(1) lim;— W =0.

2) @ is an increasing function in (0, 00).
(3) Foreverys,t > 0and A > 0

s+t s t s+t
2x*—<,\*(—>x*—<x* . 2.4
() <aen (5)raen (1) =ren (). ea
(4) Foreveryt > 0and » > 0
ALg* L +1 < A L + AL (2.5)
Yo \oL ="o 3 ’ '

where L > 1 is the costant appearing in formula (2.2).
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Remark 2.4 Lemma 2.3 allows to list some properties that we will frequently use in
the sequel.

(1) Foreverym, M € Nwith M > mL, where L is the constant appearing in formula
(2.2), and for every o € N(])V

21l exp (Mgaj) (%)) < Cexp <m<p:; <|:1—|>> , (2.6)

with C := "L,
(2) Forevery «, B € N(I)V and m € N

2m<ﬂ2(|a+ﬂ|> <mg}, <|i|) + mg <@) 5mgo:g(|“+ﬁ|>. 2.7)
2m m m m

We now introduce the ultradifferentiable function spaces and their duals of Beurling
type in the sense of Braun, Meise and Taylor [8].

Definition 2.5 Let w be a non-quasianalytic weight.
(a) For a compact subset K of RY and A > 0 define

Eoa(K) = {f € C¥(K): pk..(f) = sup sup |39 f(x)|exp (—M’Z (%)) < 00} :

xEKaEN(I)V

Then (&, ,,.(K), pk.,) is a Banach space.
(b) For an open subset €2 of RY define

En(Q) :={f € C®(Q): pr.m(f) <0 VK € Q, m € N}

and endow it with its natural Fréchet space topology, i.e., with the lc-topology gener-
ated by the system of seminorms {px u}keq.meN. The elements of &, (€2) are called
w-ultradifferentiable functions of Beurling type on 2. The dual &£, (2) of &£,(2) is
endowed with its strong topology.

(c) For a compact subset K of RV define

Dy(K) = {f € &,RNY: supp f € K}

and endow it with the Fréchet space topology generated by the sequence {pg_m }menN
of norms. For an open subset 2 of RV define

Dy, (L) :=ind j—)Da)(Kj)v

where {K;};en is any fundamental sequence of compact subsets of 2. The ele-
ments of D,,(2) are called test functions of Beurling type on Q. The dual D, (R2)
of D, (€2) is endowed with its strong topology. The elements of D, (£2) are called
w-ultradistributions of Beurling type on 2.
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Remark 2.6 Let w be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) For every open subset 2 of RV the space &,() is a nuclear Fréchet space, see
[8, Proposition 4.9].

(2) For every compact subset K of R we have D,,(K) # {0} and D,,(K) is a nuclear
Fréchet space, see [8, Remark 3.2 (1) and Corollary 3.6(2)].

(3) For every open subset 2 of RY the inclusion D, () — &, () is continuous with
dense range, see [8, Proposition 4.7 (1)].

We consider the following notation for the Fourier transform of a function f €
L'RN):

FNE = f@) = /}% (e dy, £ eRY,

with standard extensions to more general spaces of functions or distributions. We
introduce the space of weighted rapidly decreasing functions of Beurling type as
defined in [2, Definition 1.8.1].

Definition 2.7 Let o be a non-quasianalytic weight function. We denote by S,, (RM)
the set of all functions f € LY(RY) such that f, f e C*®(RY) and for each & > 0
and @ € Név we have

[l exp(Aw)d® flloo < 00 and || exp(kw)&"‘f”oo < 00. (2.8)

The elements of S,,(R") are called w-ultradifferentiable rapidly decreasing functions
of Beurling type.

The space S,,(R") is a Fréchet space with respect to the Ic-topology generated by
the sequence of norms

Il exp(n@)d* flloo + Il exp(10)3* f oo, f € Sw(RY), n € N.

We denote by S’ (RV) the dual of S,,(R"Y) endowed with its strong topology.

Remark 2.8 Let w be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) The condition (y) of Definition 2.1 implies that S,,(RY) < S(R") with continu-
ous inclusion. Accordingly, we can rewrite the definition of S,,(RV) as the set of
all the rapidly decreasing functions that satisfy the condition (2.8) in Definition
2.7.

(2) The Fourier transform F : S,,(RY) — S, (RY) is a continuous isomorphism, that
can be extended in the usual way to S, (RN ), see [2, Proposition 1.8.2].

(3) The space S,,(RY) is closed under convolution, under multiplication, translation
and modulation, where the translation and modulation operators are defined by
Ty f(x) := f(x —y) and M, f (x) := '™ f(x), respectively, where 7, x, y € RV,
see [2, Propositions 1.8.3 and 18.5].
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(4) The inclusion Dy,(RY) — S,(RY) — &,(RYM) are continuous with dense
range, see [8, Proposition 4.7.(1)] and [2, Propositions 1.8.6 and 1.8.7]. There-
fore, £, (RV) ¢ S.,(RN) c D.,(RV).

(5) The space S, (RV) is a nuclear Fréchet space, see [5, Theorem 3.3].

The space S, (R") is a Fréchet space with different equivalent systems of semi-

norms. Indeed, the following result holds (see [4, Theorem 4.8] and [3, Theorems
2.6]).

Proposition 2.9 Let w be a non-quasianalytic weight function and consider f &
SMRN). Then f € S,(RYN) if and only if one of the following conditions is satis-
fied.

()@ VA >0, e N(I)V, 1 < p <003Cqyy,p > 0such that || exp(Aw)d® fl, <
Cq, ., p, and
(i) VA >0, ax € Név, 1 < p <003Cq,,p > 0 such that || exp()»a))ao‘f”p <
Ca,r,p-

(2) () VA >0, 1 < p <003Cy p > 0such that || exp(Aw) fllp < C;. p, and
(i) VA >0, 1 < p <003Cy., > 0 such that | exp(ro) f, < Ci. p.
3) VA, >0, 1 <p=<003Cys 4, p > 0such that

o « (1ol
sup [l exp(ua)d” fllpexp | =Ag, | 5= ) ) = Crpp:

N
aeNj

Remark 2.10 We observe that the assumption f € S(R") in Proposition 2.9 can
be replaced by the weaker assumption f € C®(R"). Indeed, the condition (y) in
Definition 2.1 implies for every x € RY and « € N(I)V that

|x¥| < exp (—'%') exp ('Z—lw(x)> ,

where b is the constant appearing in condition (y). Therefore, if one (and hence all)
of the equivalent conditions (1)=-(3) of Proposition 2.9 is satisfied, then for every
a,,BeN(I)Vandl < p < oo we have

Ix%8% f1l, < exp (—'%') Hexp (%w) aF f

Accordingly, f € S(RV).

In the following, we will use this system of norms generating the Fréchet topology
of S,(RY):

gru(f) := sup sup exp (—MDZS (%)) exp(uw ()0 f(X)], &, 1 >0, f€S,[RY).

aENSJ xeRN

In particular, the Fréchet topology of S,,(RY) is generated by the sequence of norms
{@m.ntm.nen.
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3 The spaces Oy, (RV) and O¢ , (RV)

We first introduce the spaces (’)M,w(RN ) and Oc,w(RN ) and then we collect some
basic properties about them.

Definition 3.1 Let w be a non-quasianalytic weight function.
(a) For m € N and n € Z we define the space O,’Zw(RN ) as the set of all functions

f € C®(RN) satisfying the following condition:

Fmn(f) := sup sup 3% f(x)|exp (—na)(x) — m<p;’; <%>> <oo. (3.1

aeN) xeRN

(b) We denote by O M,w(RN ) the set of all functions f € C®(R") such that for
each m € N there exist C > 0 and n € N such that for every « € Nf)v and x € RN we
have

[0% f(x)| < Cexp (na)(x) + mg) (m>> : (3.2)
m
or equivalently,
o oo
On.o®") = (N | Jor,®". (3.3)
m=1n=1

The elements of Oy, (RY) are called slowly increasing functions of Beurling type.

(c) We denote by O¢_,(RN) the set of all functions f € C>(R"N) for which there
exists n € N such that for every m € N there exists C > 0 so that for every « € Nf)v
and x € RV we have

[0% f(x)] < Cexp (na)(x) +my) (';—')) ; (3.4)
or equivalently,
Oco®):=J ) O, ®Y). 3.5)

n=1m=1

The elements of Oc_,,(RY) are called very slowly increasing functions of Beurling
type.

Remark 3.2 By Definition 3.1, we immediately obtain the following properties.

(1) Du@®R"Y) € Oc,o(RY) and Dy, (RY) € Opr,0(RY).

(2) Forevery o € Nf)v the function x¢ € (’)M,w(RN ). Indeed, fixed any o € N(I)V , we
have that 3#x% = [TV a;(@; — 1)......(a; — Bi + Dx % for B < @, and that
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3P x% = 0 for B > «. Since condition (y) implies that (1 4 1) < e*%e%‘“(” for
all > 0 and w is an increasing function on [0, 00), we have for every f < « and
x € RV that

N
la
|8ﬂxa|<na'e §@i=pi) ppo(xil) <ale bl bw(x)
i=1

Accordingly, x* € Oy, (RV).
(3) The function log(1 + |x|2) € (9c,w(RN ) and the proof follows as in the case (2)
above.

We now give an useful characterization of the elements of the spaces O M,w(]RN )
and Oc ,(RV).

Proposition 3.3 Let w be a non-quasianalytic weight function. Then the following
propetrties are satified.

(1) A function f € C®(RY) is a slowly increasing function of Beurling type if and
only if f € E,(RN) and for each m € N there exist C,R > 0 and n € N such
that for every o € Nf)v and x € RN with |x| > R we have

[0% f(x)| < Cexp (na)(x) + mgy) (|m|)> (3.6)

(2) A function f € C®(RN) is a very slowly increasing function of Beurling type if
and only if f € E,(RN) and there exists n € N such that for every m € N there
exist C, R > 0 so that for every a € Nf)v and x € RN with |x| > R we have

[0% f(x)| < Cexp (na)(x) + mg) (| |)) 3.7

Proof (1) The necessity of the condition (3.6) is obvious. We need only to prove that
f € E,(RN). So, fix a compact subset K of RY. Then for each m € N there exists
n € N such that for every o € N{)V and x € K we have

[0% f ()| <rmn(f)exp(nw(x)+m¢w(| |>> <Drmn(f)CXp(m(pw(| |))’

where D := max,ck {exp(nw(y))} < oo is a constant depending only on n and K.
Hence, it follows for every m € N that

pK,m(f) = Sup sup |3af(x)|eXP (_m(p:) <|::l_|>> =< Drm,n(f) < Q.

aEN(l)V xekK

Since K is arbitrary, this implies that f € &,(RN).
We now prove the sufficiency of the condition.
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Fix m € N. By assumption there exist C, R > 0 and n € N such that the inequality
(3.6) is satisfied and f € &,(RY). Accordingly, we have

B N « [ la]
Ky := sup sup [0% f(x)|exp | —mq, = o
m

aeNY WI=R

If we set K» := minjy<g exp(nw(x)) > 1, then we obtain for every |x| < R and
a € N} that

@ « (lel}) _ Ki « [ ol
[0 f(x)] < Kyexp|mg, | — | | = —Koexp | my, | —
m K> m

K ( *<|“|))
< ——exp(no(x))exp | my, | — | ).
K> m

Therefore, setting C’ := max {% C }, the inequality (3.2) follows.

(2) follows by the same arguments for the proof of property (1) above. O

We now establish some features concerning topological properties of the spaces
introduced in Definition 3.1.

Proposition 3.4 Let w be a non-quasianalytic weight function. Then the following
properties are satisfied.

(1) Letm € Nandn € Z. Then ((’)wa(RN), rm,,,) is a Banach space.
(2) Foreveryn,n' € Z withn <n’ and m € N, the inclusion

O yRY), i) = (O RY), ry ) (3.8)

is well-defined and continuous.
(3) Foreveryn € Zand m, m' € N withm < m/, the inclusion

(O RV, ) > (O SRV, 1) (3.9)

is well-defined and continuous.

Proof (1) Fix m € N and n € Z. It sufficies to show only the completeness. So, we
fix a Cauchy sequence {f}en in (Owa(]RN), r'm.n) and observe that

||

10% £ (x) = 9% fyr ()] < exp (nw(x) + myy, (—)) rman(fj = fj), (3.10)

m

forall j,j e N,a € N{)V and x € RV Therefore, for any compact subset K of R",
we have

sup sup |92 £;(x) — 8P f;1(x)| < Ci arma(fi — fi),

B<a xeK
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for all j,j/ € Nand o € N(I)V, where Ck o = sup,cg exp(nw(x))supg,
exp (m(pj) (%)) < o0. Since ry(fj — fi) = Oas j, j/ — oo, and C®(RY)

is a Fréchet space, it follows that {f;}en is also a Cauchy sequence in C®[RM).
Accordingly, there exists f € C*®°(R") such that f; — f in C®*(R"Y), as j — oc.
In particular, 9% f; — 9% f uniformly on compact subsets of RN for every a € N(I)V .

Now, fix € > 0. Since {f}jen is a Cauchy sequence in ((’),’[”w(]RN), T'm.n), there
exists jo € N such that r,, ,(f; — fjr) < € forall j, j* > jo. It follows by (3.10) that
forevery j, j' > jo, x € RN and & € N} we have

0% fi(x) — 8% fir(x)| < eexp (na)(x) + mg} (M)) '

m

Letting j/ — oo in the inequality above, we obtain for every j > jo, x € RY and
o€ Nf)v that

||

|80‘fj(x) — 3% f(x)] < eexp <na)(x) + m(p:; <_>> .
m
Accordingly, we have

rm,n(f/_f)fe Yji > Jjo,
P (f) <t (f — fjo) +rm,n(fjo) <€ +rm,n(fjo) < Q.

This means that f € O (RV) and that f; — f in (O ,(RN), 1,y ) for j — oo,

as € > 0 is arbitrary.
(2) Fixn,n' € Z withn < n’ and m € N. Then for every f € O (RY), we have

Fma (f) = sup sup [9%f(x)|exp <—n'w(x) — myy, <%|))

aeN) xeRN

< sup sup [0%f(x)|exp (—nw(x) — mg, (%)) = rma(f).

aeN) xeRN

Therefore, the inclusion in (3.8) is well-defined and continuous.
(3)Fixm, m’ € Nwithm < m’ and n € Z. Since ¢}(¢)/t is an increasing function
in (0, 0o) (see Lemma 2.3(2)), for every f € OZ“/(D (RN) we have

Fmn(f) = sup sup [3% f(x)|exp <_n60()€) - mﬁo;k) (%>>

aeNS’xGRN

< sup sup [9%f(x)|exp (—nw(X) —m'g;, (Z—J)) =rmn(f)

aeN(IJVXGIRN

Therefore, the inclusion in (3.9) is well-defined and continuous. ]
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Via Proposition 3.4(1)—(2) we deduce that the sequence {(O,’ﬁw(RN ), F'm.n)IneN
of Banach spaces forms for each m € N an inductive spectrum. The space
U, (’);ffw(]RN ), endowed with the inductive topology defined by

{((’),’l'”w(RN), T'm.n)neN, is then an (LB)-space for each m € N. On the other hand,
via Proposition 3.4(1)—(3) we also deduce for every n € N that the sequence
{(oy w(]RN ), "'m.n)}men of Banach spaces forms a projective spectrum. So, for every
n € N the space [, oy »(RM), endowed with the projective topology defined
by {(Owa(]RN ), "'m.n)}meN, is a Fréchet space. In the following we always sup-
pose that the spaces |-, oy »®RY) and Moy oy »(RM) are equipped respectively
with the (LB)-topology and Fréchet topology defined above. In particular, the spaces
Uz, Op ,(RN) and (_, O (RY) satisfy the following properties.

Proposition 3.5 Let w be a non-quasianalytic weight function and m € N. Then
Un, oy w(RN ) is a complete (LB)-space.

Proof In order to show the completeness of the space | J -, Oy »(RY), we first prove
that the inclusion ;2 07 (RY) < C*(R") is continuous as follows.
Fix n € N. Then for every compact subset K of RV and o € N(I)V we have

sup sup |37 £ (x)|

xeK B<a

= sup sup |3ﬂf(X)| exp <—na)(x) —my) (%)) exp (nw(x) + my}, (L:%'))

xeK <«

< CK,otrm,n(f)

181

foreach f € O} (RN) where Cg ¢ :=sup,cx SUPg <y €Xp (na)(x) + mo) ( p ) <

oo is a positive constant depending on K and «. This means that the inclusion
on RN, ry,) < C®@Y) is continuous. Since n € N is arbitrary and
Un 1(9” »@®Y) is an (LB)-space, the inclusion [ JOZ, O™ (RN) — COO(RN) is
continuous too. Therefore, there exists a Hausdorff lc- topology ton|Joo, 0", (RY)
with the property that the closed unit ball of each O} w(RN ) is relatively T-compact.
But, the closed unit ball of each O,’;f w(RN ) is also T-compact. Indeed, let n € N and
let {fj}jen € {g € O,’{fw(RN): rm.n(g) < 1} T-convergent to some f € C®([RM).
Then for every x € RN, jeNanda € N{)V we have

9% £,(x)] < exp <na)(x)+m(pw(| ')) 311

Since f; — fin C>®(RV) as j — oo and hence 0% fj — 0% f pointwise on RN for
eacha € Né\', it follows by letting j — oo in (3.11) for every x € RY and « € Nf)v

that
[0% f(x)| <exp (na)(x) + mg) (|m|>>
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This implies that r,,, ,(f) < 1. So, {g € O,’:’,w(RN): rm.n(g) < 1}1is t-closed.
The result now follows by Mujica [23, Theorem 1]. O

Proposition 3.6 Let w be a non-quasianalytic weight function. Then the following
properties are satisfied.

(1) Foreveryn,n’ € Z withn < n/, the inclusion

ﬂo RN)<—>ﬂ(9 ®RM) (3.12)

m=1

is well-defined and continuous.
(2) Foreverym,m’ € Nwithm < m’, the inclusion

o0 o

UJor,®Y) — | Jor,®Y) (3.13)
= n=1

is well-defined and continuous.

Proof (1)Fixn,n’ € Zwithn < n’.Then, foreveryh € Nand f € (,_; O
we have

RM),

n, (l)(

rha (f) = sup sup [0 f(x)|exp (—n’w(x) hfﬂw(l |))

aeN) xeRN h

< sup sup [3%f(x)|exp (—nw(x) h%(' |)) =rpa(f).

aeN) xeRN h

This means that the inclusion in (3. 12) is well-defined and continuous.
(2) Fix m,m’ € N with m < m’ and h € N. Then by Proposition 3.4(3) the
inclusion ((’)wa(RN ) ' ) <= (O " (RN), ) is continuous. On the other hand,

the inclusion (OF'  (RN), ryn.) < UpZ; O, (RY) is also continuous. Accordingly,
the inclusion

o0
O, ®Y), 1) = | O, RY)
n=1

is continuous. Since & € N is arbitrary and Uzozl OZ’;)(RN ) is an (LB)-space, it
follows that the inclusion

o0 o0
Uor,®Y) < Jor,®")
h=1

n=1

is continuous, i.e., the inclusion in (3.12) is well-defined and continuous. O
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Proposition 3.6(1) yields that the sequence {(,_; O, (RY )}nEN of Fréchet
spaces forms an inductive spectrum. So, we can endow the space O¢._,(RY) with the
inductive topology defined by {ﬂ;’fz 1O »RY) }neN' Thereby, Oc ,(RY), equipped
with such an inductive topology, is an (LF)-space. Proposition 3.6(2) also yields
that the sequence {(J,2, Oy, (RY)} . of (LB)-spaces is a projective spectrum.
So, we can endow the space Oy.,,(RY) with the projective topology defined by
{UnZ) O, RM)} . Thereby, O o, (RY), equipped with this projective topology,
is a projective limit of (LB)-spaces. By Proposition 3.5, it is then a complete lc-space.
In the following we always assume that the spaces Oc,w(RN ) and OM,Q,(RN ) are

endowed with the lc-topologies defined above.

Remark 3.7 We observe that, for fixed m € N and n € N, we have that

qm.n(f) = sup sup exp (—mw;k, (%)) exp(nw (x)9% f )| = rim,—n (/).

aeNgxeRN

forevery f € S, (RM). Since {gm.n}m.nen is a fundamental sequence of norms gener-
ating the Fréchet topology of S, (RM), it follows that S, (RY) = (72 M) O™,.0
RN).

Theorem 3.8 Let w be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) The inclusion

Oc.»RY) = Oy ,(RY) (3.14)

is well-defined and continuous.
(2) The inclusions

So®RY) — Oc o»(RY) — &,(RY) (3.15)

are well-defined and continuous.
Proof (1)Fix f € Oc,w(RN) andm € N.Then there existsn € Nsuchthatr, ,(f) <
oo and so, f € O,’wa(RN) c Uns; (’)wa(RN). Since m € N is arbitrary, we can
conclude that f € O M,w(RN ). We have so shown that the inclusion is well-defined.

We now prove that such an inclusion is continuous as follows.
We first observe that for every m’ € N and n, n’ € N with n < n’, the inclusion

o
M or,®Y) < on ®Y)
m=1

is well-defined and continuous. Indeed, for every f € (i, oy w(RN ) we have

rww (f) = sup sup |3 f(x)| exp (‘”/w(X) —m'e;, <%>>

aeNgXERN
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< sup sup [0%f(x)|exp (—nw(x) —m'g) (:—J)) =1 (f).

aeN(])Vx eRN

Sincery n € {Fm.ntmen and {ry, »}men s a sequence of norms defining the lc-topology
of Mo, O, (RN), it follows that the inclusion ()7, O (RV) < O™ (RN)
is continuous. Taking into account that UZil OZf/w(RN ) is an (LB)-space and so,
OZE, w(RN )y — Unes O}’Z;(RN ) continuously, we deduce for every m’ € N and
n € N that the inclusion

o0 o0
N or,®Y) < | Jor,®Y)
m=1 h=1

is well-defined and continuous. Since O, RY) = Mo7_; Upe, Oﬁ;(RN) is the

projective limit of the sequence { Ui, O;’flw RN } N of (LB)-spaces, it follows for
’ m'e

every n € N that the inclusion

o0
() O ,RY) = Op.o[®RY)
m=1

is well-defined and continuous. Finally, since Oc,w(RN ) is the inductive limit of the

sequence {(_; O, (RY)} . of Fréchet space, it follows that the inclusion

Oc,o@®Y) = Oy »,®RY)
1s continuous.

(2) We first show that the inclusion (’)C,w(RN ) — &,(RY) is continuous. So, fix
€ Oc.oRN)andn € N.Then f € (N}, O (RN). This implies for every m € N
. s h=1“n,w p y

and K compact subset of RV that

> exp(nw(x) —nw(x))

lex|

pk.m(f) = sup sup |07 f(x)]exp (—mqo?; (*)
aeN) xeK m
el
m

= sup sup [3* f(x)|exp <—m<p;‘,(

aEN{)V xek
< D sup sup [3” f(x)| exp (—mwi‘, (M» exp(—nw(x)) < Drya(f) < oo,
aeNG’ xek m

where D := max,ck {exp(nw(y))} < oo is a constant depending only on n and K.
Since {ry.}meN is a sequence of norms generating the lc-topology of the Fréchet
space ()< (’)ﬁyw(RN ) and {pg m}geprn 1S a sequence of seminorms generating the
lc-topology of the Fréchet space &, (R"), it follows that the inclusion
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[ Ok ,RY) — £,RYN)
h=1

is continuous. Since n € N is arbitrary and Oc,w(RN ) is the inductive limit of the
Fréchet spaces {(;2, Oh ,(RM)} . it follows that the inclusion on the right of
(3.15) is continuous.

We now show that the inclusion S,(RY) — Oc,w(RN ) is continuous. So, fix
f € S,(RN). Then for every m, n € N we have that ¢,, ,(f) < 00, thereby implying
that

neN’

Fman(f) = o € N)'sup sup exp <—ms0§2 (M)) exp(—nw(x))|8% f (x)]
xeRN m
< gmn(f) < o0. (3.16)

Hence, f € Oc,w(RN ). This shows that the inclusion is well-defined. To prove the
continuity of the inclusion, we observe that for every n,n’ € N and m € N the
inclusion

o o0
0", ®RY) = () On  ®Y)
m=1 m=1
is continuous. Since (o_, o w(RN ) < Oc.»(RY) continuously for all n’ € N, it
follows for every m € N that the inclusion

o
) 0”,.o@®Y) < Oco®RY)
m=1

is continuous. Accordingly, as S,,(RY) is the projective limit of the Fréchet spaces
{Mzy O™, RN} > we can conclude that the inclusion on the left of (3.14) is
continuous. O

Finally, Oy, (RY) and Oc ,,(RY) have the following important property.

Theorem 3.9 Let w be a non-quasianalytic weight function. Then the following inclu-
sions

D,(RY) € S,(RY) € Oc »(RY) € Opr(RY) C E,(RY)

are dense.

Proof The space D, (R") is a dense subspace of S,(RY) and of &,(RY), see
[8, Proposition 4.7.(1)] and [2, Propositions 1.8.6 and 1.8.7]. So, both the spaces
Oc.o(RY) and Oy ,(RY) are dense subspaces of &, (RY).

We now prove that S, (RM) is a dense subspace of Oc,w(RN ) as follows.
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Since D, (RY) € S, (RV), it suffices to show only that D,, (R") is a dense subspace
of Oc.o»(RY). So, fix f € Oc.,(RY) and ¢ € D, (RV) such that ¢ = 1 on B1(0)
and 0 < ¢ < 1. Then for every € > 0 the function ¢ (x) := ¢ (ex) f(x), for x € RN,
belongs to D,,(RY) because Oc,w(RN) C &,(RN). Since f € Oc,w(RN), we have
that f € (p_, On,(RY) for some n € N. This implies that f € (r_, Oﬁw(RN)
forevery h € N with h > n. We claim thatr, ,+1(¢e — f) = Oase — 0™ for every
m € N. To show the claim, we proceed as follows.

Fixm € Nandlet M € Nsuchthat M > Lm, where L > 1 is the costant appearing
in formula (2.2). Then for every « € NV, x € RN and € > 0 we have

0% e (x) = 9% f ()] < 10 f (D) (@ (ex) = DI+ (Z)|af‘f(x)|e“‘ﬁ|a"‘f’¢(ex>|

B<a

< 10° F ) @lex) — DI+ Y (g>e“*f’m,n+1(f> exp((n + Do (x))

B<a

con{ o () e (251

< 10° F ) @lex) — DI+ Y (Z)e“*ﬂw,m(f) exp((n + Do (x))

B<a
X ru,0(¢) exp (Mw* (M))
i w M
< 9% f(x)(@(ex) — D]
lo|

+ a1 ()ra0(@) exp((n + Do (x)) exp (Mw;z <ﬁ>) 2,
(3.17)

after having observed that > B<a (g)e"‘_’6 < e2lol for every a € N(I)V and using
formula (2.7). Since M > mL, applying the inequality (2.6) it follows via (3.17) for
every o € NY, x € R and € > 0 that

[0% e (x) — 3% f(X)] < [3% f(x)(¢p(ex) — D)

+ €Crmn+1(frmo(@) exp((n + Dw(x)) exp <m<pj; <%>> .

Therefore, we have for every € > 0 that

Fmn+1(@e — f) = sup sup exp (—WPZ} (%)) exp(—(n + Do (x))[0%pe (x) — 0% f (x)]

aeN}y xeRN

= sup sup exp (—mfﬂ:f) (%)) exp(—(n + Do (x)[8% f (x) (¢ (ex) — D]

aEN(IJV xeRN

+€Crynr1(f)rmo(®).
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Since f € Moy On,RY) and ¢ € Dy(RY), rag ni1(f)rar0(¢) < oo and so, we
have €Cray n+1(f)rmo(@d) — Oase — 07. In order to conclude the proof, it then
remains to prove that

sup sup exp (—mgo:) (Il%l)) exp(—(n + Do x))[0% f (x) (¢ (ex) — 1)] = 0, as e — 0T,

aEN(])V xeRN

But, ¢ (ex) — 1 = 0 whenever |x| < é Accordingly, we have

sup sup exp (—WPZZ (%)) exp(—(n + D (x))[0% £ (x) (¢ (ex) — D)

aeNé\’ xeRN

= Sup sup exp (—WPZ, <|:1—|)) exp(—(n + D (x))[0% f (x) (¢ (ex) — D)

N 1
aeNy [x|>¢

= rm,n(f) sup exp(—w(x)).

1
lx|>2

Since SUp)| |- 1 exp(—w(x)) — 0ase — 07, the claim is proved.

From the arbitarity of m € N, we can conclude that ¢ — f in(),_, 021+1,w(RN )

ase — 0T andhencein Oc,w(RN ), taking into account that Oc’w(RN ) is the inductive
limit of the Fréchet spaces {(n_; O, (RV)} .

We now prove that S,,(R") is a dense subspace of Oy, (R"), thereby obtaing by
Theorem 3.8 that O¢ ,,(R") is also a dense subspace of Oy ., (RY). Since D, (RY) <
S, (RN, it suffices to show only that D,, (RM) is a dense subspace of (’)M‘w(RN ). So,
fix f € Op.o(RY) and ¢ € D, (RY) such that ¢ = 1 on B;(0) and 0 < ¢ < 1. Then
for every € > 0 the function ¢ (x) := ¢ (ex) f(x), for x € RV, belongs to D, (RY)
because Oy »,(RY) C &,(RN). To show that g, — f in Op ,(RY), we proceed as
follows.

Fix m € N and let M € N such that M > mL, where L > 1 is the constant
appearing in formula (2.2). Since f € OM,w(RN), there exist n(m),n(M) € N
such that f € Of(m)’w(RN) and f € O%M)’w(RN). Clearly, this implies that f €
OZ’,w(RN) N O%w(RN) for every h > n := max{n(M), n(m)}. Therefore, we can
proceed as above to show that for every € > 0 we have

"mn+1(@e — f) < sup sup exp <—mfﬂff, (':;-')) exp(—(n + Do (x))

aeN) xeRV

x [0% f(x)(p(ex) — DI + €Crag,n1(f)ra,0(e).

Since f € (’)%Lw(RN) and ¢ € D,(RN), we have ry ,+1(f)rmo(¢) < oo and
hence, €Cras n+1(f)rmo(@) = Oase — 0. In order to conclude the proof, it then
remains to prove that

sup sup exp (—mw;“) (M)) exp(—(n + Do (x)[0% f (x) (¢ (ex) — 1)] = 0, as e — 0T,
m

aeN) xeRV



35 Page 18 of 36 A. A. Albanese, C. Mele

As before, we have ¢ (ex) — 1 = 0 whenever |x| < L. Therefore, for every € > 0 we

€
have

sup sup exp (—mfﬂff) <|a|>) exp(—(n + Do (x))[0% f (x) (¢ (ex) — D)

aeN) xeRN m

< rmau(f) sup exp(—w(x)),

1
[x]>2

where sup‘x|>£ exp(—w(x)) — 0ase — 0T and Im.n(f) < oco. This means that
¢ — f in the Banach space O:?+1,w(RN) as € — 07, and hence in the (LB)-space
U,foz 1 OZ’) w(RN ). Since m € N is arbitrary and OM,w(RN ) is the projective limit of
the (LB)-spaces {UZOZI Oﬁw(RN) }meN’ we can conclude that ¢ — f in the space
OM,w(RN ) as € — 0. This completes the proof. O

4 Oy, »(RN) is the space of multipliers of the spaces S, (RV) and
S (RN)

The main aim of this section is to prove that Oy ,(R") is the space of multipliers
of both the spaces S,(RN) and SL/U(RN ). In order to do this, we first show some
preliminary facts.

Lemma 4.1 Let w be a non-quasianalytic weight function and f € C®(RN). If fg
So(RN) for every g € S, (RN), then f € £,(RN).

Proof Fix a compact subset K of RY and ¢ € D,(RY) € S,,(R") such that g = 1
on K and0 < g < 1. Then fg € S,,(R") and so, for every m € N we have

gm1(fg) = sup sup [0*(fg)(x)|exp (—mwi,i ('Z—')) exp(w(x)) < oo.

aeN{)" xeRN

Since g = 1 on K, it follows that

Pk.m(f) = sup sup [3% f(x)|exp <_Wp$ <|:7|>>

aeN(l)V xekK

< sup sup [3%(fg)(x)|exp (—mwz (':1—'>> exp(w(x))

ozEN(l)V xeRN

=qm,1(fg) < o0.

Since K is arbitrary, we can conclude that f € &,(RN). O
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Lemma 4.2 Let w be a non-quasianalytic weight function. Let p € D,(RN) so that
suppp € B1(0) and {x;}jen C RY be a sequence such that |xj| = |xj—1] + 2 for
every j > 2 and |x1| > 1. If we set

g@) =) plx —xj)exp(—jolx)), x €RY, @.1)
jeN

then g € S,(RN).
Proof Since the functions of the sequence {o(- — x;)} jen have disjoint supports, the
series on the right of (4.1) converges in C>(RM) and so, the function g on the left
of (4.1) belongs to C*°(RY). On the other hand, the property (y) of w implies that
exp(w(x)) > exp(a)(l + Ix|)? for every x € RV, Therefore, g € S(RV), see [13,
Proposition 5, Chap. 4 §11]. In order to conclude the proof, we proceed as follows.

Fix A, # > 0 and x € RV, Then either x € B;(x;) for some j € Norx ¢ Bj(x;)
for all / € N. Accordingly, we have for every o € Nf)v that either

3%g(x) = exp(—jw(x;)d%p(x — x),
or 3%g(x) = 0. Since p € D, (RY), it follows for every a € N(I)V that
exp(uw(x))[3%g(x)| <

< exp(uw(x)) exp(—jw(x;)) exp <—qu(x —Xxj)+ Aoy <%>) anku(p),
4.2)

where K is the constant appearing in the property («) of w. But, we have
ox) =w((x —xj)+x;) < K(wx —xj) +w(x;)+1).
So, by (4.2) we obtain for every o € N(I)V that
exp(po(x))[3g(x)| < e exp(Kpo(x — x;) + K po(x;))

x exp(—jw(x;))exp (—qu(x —xj) + A} (M)) anku(p)

A
||

=X exp(Kp — jHw(x;))) exp (wz‘; (7» @k (p)

and hence,

exp (-M/JZ, ('i—')) exp(puo(x)[8°g ()] < e exp(K i — ))o (x)) g5 k1 (0)-

Since exp((Ku — j)w(x;)) < 1 whenever j > K and x is arbitrary, it follows that

¢3u(8) < €* max exp(Kp = ))o(x)aku(p) < 0o
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But, A and p are also arbitrary. So, we can conclude that g € Sw(RN ). |

Remark 4.3 Let w be a non-quasianalytic weight function. Let p € D, (RV) so that
suppo € B1(0) and {x;};en C RY be a sequence such that [xj| > |xj—1| + 2 for
every j > 2and |x1| > 1.Ifh € S,(RN) and gx) = ZjeN h(x;)p(x —x;) for each
x € RV, then g € S,,(RY). The proof follows by arguing as in the proof of Lemma
4.2, after having observed that sup, cg~ [2(x)| exp(jw(x)) < oo foreach j € N.

We can now state and prove that O M,w(RN ) is the space of multipliers of S, (RM).

Theorem 4.4 Let w be a non-quasianalytic weight function and f € C®(RN). Then
the following properties are equivalent.

(1) f € Ouwu@®).
(2) Forevery g € Sp,(RN) we have fg € S,(RV).

Moreover, if [ € OM,w(]RN), then the linear operator My : S,(RY) = S, (RY)
defined by M y(g) := fg, for g € Sy (RN), is continuous.

Proof (1)=>(2). Fix g € S,(RY). Then fg € C*®(R"). Moreover, for every o € N
and x € RN we have

9 (fl < Y <j)|3yf(X)|I8“‘Vg(x)l- 43)

y=a

Fixedm € N, let M € N so that M > Lm, where L > 1 is the constant appearing in
formula (2.2). Since f € (’)M,w(RN ), there existn € N and C > 0 such that for every
y € Nf)v and x € RY we have

|0Y f(x)| < Cexp (na)(x) + Mgy} (%)) . (4.4)

On the other hand, g € S, (RM). So, setting M’ := max{M, n + m} and recalling that
@} (t)/t is an increasing function in (0, 0o), we have for every § € N{)V and x € RV
that

)
10°8()] < quraar () exp (M/fpff) (%) - MQO(X))

|81

< qm',m'(8) exp (MQDZZ <M> - M'w(X)) . 4.5

By combining (4.3), (4.4) and (4.5), we obtain for every « € Név and x € RV that

exp(me (x))[0%(fg)(x)| <
<> (j)cﬁp«n +m)w(x)) exp (waf, (%)) 077 g ()|

y=a
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<C Z (i) exp((n + m)w(x)) exp (Mgo:) (%)) am . (8)

y=a

X exp (Mgoaﬁ <|aﬂ—4y|) — M/a)(x))

< Camr (@) exp((n +m — M) Y (3) exp (M o (M)) )

M
y<a
X €Xp (Mgo;k) <|aﬁ—4y|)) .

Using inequality (2.7) and taking in mind that sup, cgv exp((n +m — M) w(x)) < oo,
it follows for every & € N} and x € R¥ that

||

exp(ma (x))|9% (f&) ()| < Cqmr ()2 exp <M¢ZZ <ﬁ>) . (46)

Since M > mL, applying formula (2.6) we obtain via (4.6) that for every o € Nf)v
and x € RV

||

exp(mw(x))|3*(fg)(x)| < Cqm pm(g) exp <m(p:) (?))
and so

Gn,m(fg) < Cexp(mL)gp, pm(g) < oo. 4.7

The thesis follows from the arbitrarity of m € N.

(2)=>(1). We first observe that by Lemma 4.1 we have f € &,(R"). We now
suppose that f ¢ (’)M,w(RN ). Then by Proposition 3.3(1) there exists m € N such
that for each C, R > 0 and n € N there exist x € RY with [x| > Rand « € NS] such
that

0% f(x)] > Cexp (na)(x) + me’ <%)> .

So, we can choose two sequences {a}jen C N(')V and {x;}jen C RN with [xj41] >
|x;| + 2 forall j € Nand |x{| > 1 such that

0% f(xj)| = exp (jw(xj)+mc0§f, ('iln—ﬂ)) 4.8)

Letp € D, (RM) ¢ S, (RY) such that supp p € B1(0) and p = 1 on B, (0) for some
0 <r < 1.Forevery x € RV let

g(x) =Y plx — xj) exp(—jo (x))).

jeN
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Then by Lemma 4.2 we have g € S,,(R") and 50, ¢yn.m(fg) < oc. In particular, we
have that

sup [0/ (fg)(x;)|exp (mw(xj) — me,, <|(jn—]|>) = qmm(fg) <o0. (4.9)

jeN

On the other hand, for every j € N we have g = exp(—jw(x;)) in B, (x 7). Accord-
ingly, forevery j € N, x € E,(xj) and o € N(I)V we have

3% (fg)(x) = exp(—jw(x;))d” f (x).
Therefore, by (4.8) and (4.9) it follows that

dman(f8) = sup|3% £ (x})| exp <mw<x,~) — g, (":‘ﬂ—")) exp(—jo(x)))

jeN

> sup exp(mw(x;)),
jeN

thereby implying that SUP jeN exp(mw(x;)) < oo.But, lim;_, o exp(mw(x;)) = +00
and hence, sup jeN exp(mw(x;)) = oo. This is a contradiction.

Fix any f € Oum,o(RY). Then the operator M : S,(RY) — S,(RY) is well
defined by the proof above. Actually, M 7 is also continuous as follows directly from
“&.7). m|

Remark 4.5 (a) Let f € S,(RY). Then fg € S,(RV) for every g € S,,(RY). So, by
Theorem 4.4 it follows that f € Oy, (RV).

(b) Let f € E,(RY). Then fg € S,(RYN) for every g € S,(RY) if and only if
3 g € Sp(®RN) forevery g € S,(RY) and @ € N(])V.

Indeed, the condition on the right clearly implies the condition on the left. Con-
versely, the assumption fg € S,(RY) for every g € S,(R") implies for every
j=1,..., N that

0,118 =0;(f8) — f(3;8) € Su@®™).

So, proceeding by induction the result follows.

Consequently, by Theorem 4.4 we can conclude that for fixed f € Oy ,(RY)
and o € N(I)V the function 0% f € OM’w(RN ) too, and the linear operator Mya s :
S,(RN) — S, (RV) is continuous.

Finally, we show that Oy ,,(R") is also the space of multipliers of S/ (RV).

Theorem 4.6 Let w be a non-quasianalytic weight function and f € E,(RN). Then
the following properties are equivalent.

(D) f € Omo@®).
(2) ForeveryT € SC’O(]RN) we have fT € SL’U(RN).
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Moreover; if f € Op.o(RN), then the linear operator M: S, (RV) — S, (RV)
defined by M ¢(T) := fT, forT € S! (RN), is continuous.

Proof (1)=(2).FixT € S, (R™). By Theorem 4.4 the linear operator Mys: S, (RN) —
S, (RY) given by My(g) = fg.forg e S, (RM), is continuous and so, the linear func-
tional T o My : S,(RV) — C is also continuous. Accordingly, 7 o My € S, (RV).
But, for every g € S,,(R") we have

(T oMp)(g) =(T,My(g) =(T, fg)=(fT,8g)

Therefore, fT =T oMy € S, (RV). This completes the proof.

(2)=(1). Suppose for every T € S/ (RV) that fT € S, (RM). Then for a fixed
g€ S, (RM) the linear functional L : S(’U(RN) — Cdefined by L(T) := (fT, g), for
T e SC’O(]RN ), is continuous and so, L € S;;(RN ). Since S,,(RY) is reflexive, there
exists h € S,,(RN) such that L(T) = (T, h) forevery T € S(/D(RN), ie., (fT,g) =
(T, h) forevery T € S, (RV). Accordingly, for every T € D,(RY) € S (RV) we
have (fT,g) = (T, h). Since for every T € D, (R") we have (fT,g) = (T, fg)
and D, (R") is a dense subspace of S,,(R"), it follows that fg = h € S,(RV). So,
as g € S, (RY) is arbitrary, by Theorem 4.4 we can conclude that f € O M,w(]RN ).

Fix any f € OM,,U(RN). Then for every g € S,(RV) and T e SC/U(RN) we have

(fT,g) = (T, fg).

This means that the linear operator M ;: S, RNy > S, (RV) is the transpose of the
continuous linear operator M : S, (RY) — S, (RY). Therefore, the linear operator
My: SRN) — S, (RV) is necessarily continuous. o

5 Other topologies on Oy, (RN)

In this section we show that the space Oy ,(R") can be naturally endowed with

other lc-topologies. We also compare these lc-topologies with each other and with the

projective lc-topology defined on Oy, (RY) by the spectrum {US2, O | (RM)}en.
We begin by giving another useful chartacterization of the space Oy o,(RV).

Theorem 5.1 Let w be a non-quasianalytic weight function and f € C*®°(RN). Then
the following properties are equivalent.

(1) f € Ou.o@®").
(2) Forevery g € S, RNY and m € N we have

Gm,g(f) := sup sup |g(x)[|d* f(x)|exp (—mwz ('Z—l)) <oo. (5.1

ozEN(l)V xeRN

Proof (1)=(2). Since f € (’)M,w(RN), we have for every m € N that there exist
C > 0 and n € N such that for every o € N(')V and x € RY the following inequality is
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satisfied
|0 f(x)| < Cexp (nw(X) +mgy, <| |))

Therefore, for any fixed g € S, (RY), it follows foreverym € N, «a € Név andx € RV
that

lg ()10 f (x)] exp (-mf/);‘l <%>> < Cexp(nw(x))|g(x)],

with n € N depending only of m. This implies that

qm.g(f) = C sup exp(nw(x))[g(x)| < oo.

xeRN

Since g € S, (RY) is arbitrary, the thesis follows.
(2)=(1). We first show that f € &, (RM). So, fixed any compact subset K of RY,
let g € D, (RY) such that g = 1 on K. Then it follows for every m € N that

Pk.m(f) = sup sup [6%f(x)| exp (‘mwiz (l%l))

xekK aeN(’)V

< sup sup |g(x)[|3% f(x)]exp <_m¢:’ (%>>

xekK aeN(l)V

= Qm,g(f) < oQ. (5.2)
Since K is an arbitrary compact subset of R", we can conclude that f € &,(R").
Suppose that f ¢ OM,Q,(RN ). Since f € &,(RY), it follows from Proposition

3.3(1) that there exists m € N such that for each C, R > 0 and n € N there exist
x € RY with |x| > R and @ € N} such that

10 f(x)] = Cexp <nw(X) + mey, (|m|))

So, we can choose two sequences {«} jen C Név and {x;}jen C RN with [xj41] >
|xj| 4+ 2 forall j € Nand |x{| > 1 such that

0% f(xj)] = exp (Jw(x])+m§0w(|m/|))~ (5.3)

Next, let p € D,(RY) c S, (RY) such that supp p € B;(0) and p = 1 on B, (0) for
some 0 < r < 1. Forevery x € RV let

g(x) =Y plx — xj) exp(—jo (x))).

jeN
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Then by Lemma 4.2 we have g € S,(R") and hence, it necessarily holds that
qm,g(f) < oo. In particular, we have that

Suglg(x]‘)llaaff(x/')lexp <mw(Xj) — myy, (I%I)) = dqmg(f) <oo. (5.4)

Jje
But, g(x;) = exp(—jw(x;)) for every j € N. So, it follows by (5.3) and (5.4) that

qm.g(f) = supexp(—jw(x;)|9% f(x;)| exp (mw(Xj) —me, <|(:n—]|))

jeN

> sup exp(mw(x;)),
jeN

thereby implying that sup ;o exp(mw(x;)) < oo. This is a contradiction because
lim;_, o exp(mw(x;)) = co. Hence, f necessarily belongs to (’)M,w(RN). O

Theorem 5.1 implies that the set {gm, ¢} N, ges, vV forms afundamental system of
norms on Oy ., (RY). Denote by  the Hausdorff Ic-topology on Oy, (RY) generated

bY {gm, ¢} men ges, ®Y)-
We now collect some properties of the Hausdorff lc-space (O M,a,(RN ), T).

Theorem 5.2 Let w be a non-quasianalytic weight function. Then the following prop-
erties are satisfied.

(1) The inclusion
(Ou.o@®RY), 1) = &,RY) (5.5)

is continuous with dense range.
2) (OM,w(RN ), T) is a complete lc-space.

Proof (1) The continuity of the inclusion (O ,(RY), 1) < &,(RN) follows by
repeating the arguments at the beginning of the proof of Theorem 5.1 (2)=(1), i.e., of
(5.2). On the other hand, the facts that the inclusion Dy, (RY) < &,(RY) has dense
range (see Remark 2.6(3)) and D, (RY) € Oy, (RY) (see Remark 3.2(1)) clearly
imply that the inclusion (O, (RY), 7) < &, (R") has dense range too.

(2) Let {fi}ics be a Cauchy net in ((’)M,w(]RN), 7). Since the inclusion (Ouy e
(RM), 1) <> C®(RN) is continuous as it is easy to prove, it follows that { fi};c; is
also a Cauchy netin C ©(RN). But, C*®(R") is a Fréchet space and hence, a complete
lc-space. So, there exists f € C®(RY) such that f; — f in C*°(RY). We claim that
fi = fin (Op.o@RY), 7). To see this, we fix g € S,(RY), m € Nand € > 0. Since
{fitier 1s a Cauchy net in (OM,Q,(RN), 7), there exists igp € [ such that for every
i,i’ > ig we have

qm.o(fi — fir) = sup sup |g(0)[19*(fi — fi)(x)|exp (—mﬁl’:; <%>) <e,

xeRN aeNj
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ie., foreveryi,i’ > io, @ € N} and x € RV we have

lo|

8GII8(fi — fi) )] < eexp (W; (;» |

Since f; — f in C®°(RY) implies that 3% f; — 3% f pointwise in R" for every
o€ N(’)V , by letting i’ to infty it follows for every i > i, a € N(])V and x € RY that

lo|

8@I1(fi = NI < eexp (W;; (H))
and so,

18 COI10% f ()] < [g()IO*(f — fip) ()] + 18 ()]0 fi ()]
< eexp (m(p;“) <%>> + g (x)[10% fiy (x)]-

Accordingly, we have for every i > iy that

m.g(fi — f) <€ and qug(f) < €+ qmg(fip)-

Since g € S,(RY) and m € N are arbitrary, this shows via Theorem 5.1 that f e
Om.»@®Y) and that f; — f in (Op.o(RY), 7). O

We recall that the sequence {Uflo:1 (’),’ff © (RM) }men of (LB)-spaces forms a projective
spectrum and Oy ,(RY) = N> UX® O (RY). We denote by ¢ the projective

m=1 “n=1
topology on the space (’)M)w(RN) defined by {UP? | C’);{”w(RN)}meN. The next aim is
to compare the topology t with the topology ¢. To this end, we introduce the following
spaces.

Definition 5.3 Let w be a non-quasianalytic weight function. For m € N we define the
space

or RN) = {feCOO(RN):VgeSw(RN) mo(f) <oo} (5.6)

and endow it with the lc-topology 7, generated by the system of norms {g ¢} gc s, RN)-

It is straightforward to verify that the following topological equality holds
(Om.w@®Y), 1) = N0 (OF RY), 7). (5.7)

when the space on the right hand side is endowed with the corresponding projective
limit topology. Moreover, the following results hold.

Proposition 5.4 Let w be a non-quasianalytic weight function and m € N. Then the
following properties are satisfied.
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(1) The inclusion U2, O} w(RN ) = (OF (RN), ) is well-defined and continuous.

(2) Uz, 0 w(RN )=0¢ (RN) algebraically. Moreover, the spaces Une, 08 w(RN )
and (O;’:, (RM)Y, 1)) have the same bounded sets.

(3) Oy RN, 1,,) is a complete lc-space.

Proof (1) Fix g € S,,(RY). Then for each n € N there exists ¢, > 0 such that for
every x € RV we have

18(X)] = cnexp(—nw(x)). (5.8)
This implies for every n € N that the inclusion
oy ,®Y) — or (®Y)

is well-defined and continuous. Indeed, for a fixed n € N, we obtain via (5.8) that

Gm.g(f) = sup sup |g(x)|[d% £ (x)| exp (—mwz‘; <%>>

xeRN aeNéV

<c, sup sup |3%f(x)|exp <—na)(x) — mg), (%)) = cnFman(f).

x€RN geNY

Since g € S,,(R") is arbitrary, the continuity of the inclusion O ,(RY) — O (R)
follows.

Since UZ2 O w(RN ) is an (LB)-space, we deduce that the inclusion U72 O |
(RV) — (O (RM), 1,,) is continuous.

(2) By (1) above it suffices to show only that every bounded subset of (O;’Z) RM), 1))
is also a bounded subset of UZO=1 (’)Zf w(RN ). To this end, we fix a bounded subset B of
(O (RM), 7,,). We would show that there exists 19 € N such that sup feBTmn(f) <
oo. If this is not the case, then sup ;g rm n(f) = oo for every n € N. To get a
contradiction, we proceed as follows.

Foreach j € NletK; := B;(0) x {¢ € N): || < j}. ThenUjenK; = RV xNJ.
On the other hand, taking in account that the function gg(x) := exp(—|x|?), for
x € RV belongs to S,,(RY) we have for every f € B and n, j € N that

sup 3% f(x)|exp <—nw(x) — mg, ('Z—'))

(x, @)€K
< sup exp(jx|* — nw(x))|d* £ (x)|go(x) exp <—m¢2 ('Z—')) < kjGm.g(f)s

(x, )€K

where k; := SUP(x ¢)eK; exp(|x|?> — nw(x)) < oo, and hence

sup  sup 9% £ (x)] exp <—nw(x) — mg), ('}%')) < 00.

feB (x,a)ekK;
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Since sup s p rm,n(f) = 00, an argument by induction then yields that there exist a
sequence { f,}nen € B and a strictly increasing sequence { j, }, <N of positive integers

o
such that for every n € N there exists some point (x,, &,) €K j,,, \K,_, for which

19 £, ()] exp (—nw(x,a e (%)) o (59

Now, we choose a function p € D,,(R") such that suppp € B;(0) and p(0) = 1. We
define

gx) = Zexp(—kw(x))p(x —xy), xeRVN, (5.10)
k=1

Then by Lemma 4.2 we have g € S, (RM). In particular, g(x,) = exp(—nw(x,)) for
every n € N. Hence, by (5.9) it follows for every n € N that

CIm,g(fn) = g(xn)|8°‘"fn(xn)| exp <_m(p:) (|(lx":|))

> exp(—nw (x,))[3% fy (xy)| exp (‘m‘”‘i <|(;Xn|>> -

This shows that sup ;g gm,¢(f) = 0o, which is a contradiction as B is a bounded

subset of (O (RM), 1) and hence SUP fep Gm,g (f) < 0.
(3) follows as in the proof of Theorem 5.2(2). O

Let X = ind ,_, X,, be an (LB)-space with canonical inclusions j,: X, — X for
each n € N. Recall that X is called regular if every bounded subset of X is contained
and bounded in a step X,, for some m € N. Every complete (LB)-space is regular,
[17, (5) p.225]. Accordingly, Proposition 3.5 implies that the space U;';l(’),'{fw(RN )
is a regular (LB)-space for each m € N. On the other hand, Proposition 5.4 yields
another proof of the regularity of the (LB)-spaces U352, O »RY).

Proposition 5.5 Let w be a non-quasianalytic weight function and m € N. Then
Uz, Owa(RN) is a regular (LB)-space. Moreover, U2 | O} | (RN) is the bornological
space associated with the space ((’);’Z) RN, ).

Proof The result follows from Proposition 5.4(2). Indeed, in the proof of Proposition
5.4(2) it has been established also that every bounded subset of (O;?; @RM), 7,,) is

contained and bounded in the Banch space O} »@®Y) for some n € N. O
Further immediate consequences of Proposition 5.4 are the following results.

Proposition 5.6 Let w be a non-quasianalytic weight function. Then the inclusion

(Om.0@®RY), 1) = (Oy.»(RY), 7) (5.11)
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is continuous, i.e., the topology T is coarser than the topology t. Moreover, the spaces
((’)M,w(RN), t) and ((’)M,w(RN), T) have the same bounded subsets.

Proof Since

(O @®Y), 1) = proj e U2, O, (RY)
and (Op.o»(R"), T) = proj (O R"), 7)),

the result follows immediately from Proposition 5.4(1)-(2). m]

Proposition 5.7 Let w be a non-quasianalytic weight function. Then the inclusion
So@®") = (On.o@®Y), 1) (5.12)

is continuous with dense range.
Proof The result immediately follows from Proposition 5.6, Theorems 3.8 and 3.9. 00

Let X be a Hausdorff Ic-space and "'y be a system of continuous seminorms gen-
erating the topology of X. Then the strong operator topology 7, in the space £(X)
of all continuous linear operators from X into itself is determined by the family of
seminorms ¢, (S) := ¢g(Sx) (§ € L(X)) foreach x € X and ¢ € I'y. In such a
case we write L;(X). Denoted by B(X) the collection of all bounded subsets of X,
the topology 5, of uniform convergence on bounded sets is defined in £(X) by the
seminorms gg(S) := sup,cp q(Sx) (S € L(X)) foreach B € B(X) and g € I'y. In
such a case we write L (X).

By Theorem 4.4 the space O (R™) can be identified with the space M (S, (RY))
of all multipliers on S, (RY) via the map M: Oy ,(RY) — M(S,(RY)) defined
by M(f) := My for each f € Om.»(RY). Since M(S,(RV)) is a subspace of
L(S,(RN)), the space Oy ,,(RY) (via the map M) can be then endowed with either
the topology 7, induced by £, (S,,(R")) or the topology 7, induced by L (S, (RN)).
In the next result we compare the three topologies 7, 7 and .

To this end, we first show the following variant of Lemma 4.2.

Lemma 5.8 Let w be a non-quasianalytic weight function. Let h: RN — R be a
non-negative function satisfying the condition

VA >0 | l‘im exp(lw(x))h(x) = 0. (5.13)

Then there exists g € S, (RN) such that
vx e RN h(x) < g(x). (5.14)

Proof Let p € D, (R") such that p > 0, p = 1 on B;(0) and supp p < B;(0). Let
{xj}jen C RN be a sequence satisfying the following properties: lim; o [xj] = 00;
there exists H € Nsuch that |[{j € N: x € By(x;)}| < H forevery x € RN for any
x € RY there exists j € N such that x € B (x;).
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Let
aj:= sup h(x), jeN, (5.15)
X€B2(xj)
and
gx) = Za.,'p(x —Xj), XE€ RV, (5.16)
jeN

where the series on the right of (5.16) is a finite sum for every x € RV,

For any fixed x € RN, let j € N such that x € By(x;). Then g(x) > a; > h(x).
This shows that h(x) < g(x) for all x € R¥. So, it remains to establish that g €
S, (RN).

Since the property (y) of @ implies that exp(w(x)) > exp(a)(l + lx)? for every
x € RV, by [9, Lemma 3.6, p.127] we can conclude that g € S(R"). In order to
conclude the proof, we proceed as follows.

Fix A, u > 0 and x € RY. Then we have for every « € N(’)V that

Fgr) = Y a;9%p(x —x;).

.XEEz(.Xj)

where the set J(x) := {j € N: x € By(x )} has cardinality less or equal to that of
H, with H indipendent of x. Since p € D, (RY), it follows for every a € N(I)v that

exp(pw(x)|0“g(x)| <

||
< H sup a;exp(uw(x))exp <—MK60(X —xj) + A, (T)) Gk (0),
jel ()

(5.17)
where K is the constant appearing in the property (o) of w. On the other hand, by
(5.13) there exists C > 0 such that i(x) < Cexp(—,uKza)(x)) for all x € RY and
so, we have for every j € N that

aj= sup h(x)= sup h(y+x;) <C sup exp(—pLsz(y +xj)).
x€Ba(x;) y€B2(0) y€B2(0)

(5.18)
But, the following inequalities are satisfied

wx)=w((x—xj)+xj) < K(wx —xj) +wlx;)+1)

and

o) =o((y+x;)—y) < Kl@y+x)+aoy)+1.
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Accordingly, by (5.17) and (5.18) it follows for every « € N(I)V that

exp(ue(x))[3%g(x)| <HC sup sup exp(K*u(@(y) + 1)) exp(—K pow(x;))
JET (@) yeB(0)

x "MK exp(uK o (x — x;)) exp(uKw(x;)) exp (—qu(x —xj)

« (1l
+Ag, <T>) @1k (P)
|ex|

= HCe'™ sup exp(K*u(w(y) + 1)) exp (wz; (7>) Bk (P)
y€B2(0)

and hence,

exp (—w:; ('i‘—')) exp(uw()|d?g(x)] < HCe'K sup exp(K2 (@ (y) + 1) ik (p)-
y€B2(0)

Since D := SUP, <, 0) exp(K2u(w(y)+1)) < oo is a constant independent of x and
x is arbitrary, we can conclude that

qk,u(g) = HCDeuKCI)L,p,K(p) < Q.
But, A and p are also arbitrary. So, this implies that g € S,,(RV). O

Theorem 5.9 Let w be a non-quasianalytic weight function. Then the inclusions
(Om,0®"), 1) = (Oyo®"Y), %) = (Oy.0@®Y), 7) (5.19)

are continuous. Moreover, the spaces ((’)M,w(RN), 7), ((’)M,w(RN), 1) and
(OM,(,)(RN ), Ts) have the same bounded subsets.

Proof Since t; C 15, it suffices to show that 7, € 7. To this end, let W be a 0-
neighbourhood of £;(S,,(RY)). Then there exist a 0-neighbourhood V of S, (RY)
and a bounded subset B of S,,(RV) such that

{T € L(S,RY): T(ByC V}C W.

We can suppose that V = {h € S,(RV): gmn(f) < €} for some m,n € N and
€ > 0. To conclude the proof, we have to show that there exists a 0-neighbourhood U
of (OM,w(RN), 7) suchthat fg € V forall f € U and g € B. Tothisend, let M € N
such that M > Lm and €/ > 0 such that ¢/ < ce~™L, where L > 1 is the constant
appearing in formula (2.5). Then the set U of all functions f € Oy o, (RY) satisfying
the condition

5
Sup  sup exp (nw(X) - Mg, <|y; |)) 07 f(0)]10°g(x)| <€, g€ B,

x€RN y 5eN)Y

(5.20)
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is a 0-neighbourhood of (Oy/.,(RY), 1) for which fg € V forall f € U and g € B.
Indeed, for fixed f € U and g € B, we have for every o € N{)V and x € RY that

9 (f)0l < Y <§>|ayf<x>||a“—yg<x)| <Y (y) exp (—nw(x) + Mg, ('M'>>

y=a y<a
< €21 exp(—nw(x)) exp (M(pw (‘Ml)>
it (o (2)
<ee""exp(—nw(x))exp | mo, ;
<con( (W)
<eexp|—nox)+me, | — .
m

after having used inequality (2.6). Therefore, g, ,(fg) < € andso fg e V.
It remains to show that U is a 0-neighbourhood of (OM’w(RN ), 7). To see this, we
define

h(x) := exp(nw(x)) sup sup exp( My} (' |>> |85g(x)|, x € RV,
8€B seNY

Since B a bounded subset of S,, (RN ), we have for every L > O and x € RY that

exp(Aw(x))h(x) < exp((A +n)w(x)) sup sup eXP( Mg}, (' |)> 19°g(x)]
8€B seNly

< sup gum a+n(g) < 00.
g€B

Accordingly, % is a well-defined non-negative function on R" satisfying condition
(5.13). So, by Lemma 5.8 there exists g € S, (RY) such that h(x) < g;(x) for all
x € RV, Then U’ := {f € Oy.oRY): qm.g (f) < €'} is a 0-neighbourhood of
(OM,w(RN), 7). Moreover, for fixed f € U’ and g € B, we have for every y, § € Nf)v
that

M

<€ exp (M%) (lﬁ);')) exp(—nw(x)) exp (M(p:) (%))
= €' exp(—nw(x)) exp | My* (I)/I + My <|8|))
“\M M

< €' exp(—nw(x)) exp (M(p:; <|y; 5')) .

107 f (0)118° g (x)| < 107 f (x)]g1(x) exp(—ne(x)) exp (M%) <| |)>

Since f € U’ and g € B are arbitrary, this implies that U’ € U. So, U is a 0-
neighbourhood of (Oy.,(RV), 7).
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In order to show that the spaces (O 7., (RM), ), (Op.0(RY), 1) and (Opr.,(RN), T5)
have the same bounded sets, it suffices to prove only that every bounded subset of
((’)M,w(RN), 7,) is also a bounded subset of (OM,(U(RN), 7). To this end, we fix a
bounded subset B of (OMW(RN ), Ts) and suppose that B is not a bounded subset of
(OM,(D(RN), 7). Then there exist g € S,,(RY) and m € N such that

Sup gm, g (f) = oo. (5.21)
feB

To get a contradiction, we first observe that the inclusion (O 4, RM), 7,) — E,(RN)
is also continuous. Indeed, fixed any compact subset K of RN leth € D, (RN ) such
that 2 = 1 on K. Then 3%(fh) = 3* f on K for each f € Oy ,(RY) and & € N’
This implies for every f € OM,w(RN )and [ € N that

prm(f) = sup sup [0 £ (o) exp (_z¢; (M»

XEK(ZEN{)V !
— sup sup [0%(Fh)(x)] exp (w(x) gt (@)) exp(—o(x))
xek aeN(’)V
< Craia(fh), (5.22)

where Ck := sup, g exp(—w(x)) < 0o is a positive constant depending only on K.
Accordingly, the inclusion (O ,(RY), 75) < &,(RY) is continuous.

LetK; := Ej(O) x{a € Nf)v: || < j}foreach j € N(so,U;enK; = RN XN([)V).
The continuity of the inclusion (O M,a,(RN ), Ts) < Eu(RY) implies for every f € B
and n, j € N that

sup 1137 £ ()] exp (—m¢; (ﬁ')) <

(x, )€K

« (el
<k; sup [3%f(x)|exp (—mww (;)) = kjPg,0).m(F)

(x,a)€eK;

where k; := sup, <B;(0) |g(x)| < oo, and hence

sup sup [g(x)][0% f(x)|exp <—m¢:) <%)) -

feB (x,a)ekK;

Taking in mind (5.21), we can then argue by induction to find a sequence { f;, },en S B
and a strictly increasing sequence { j, },en of positive integers such that foreveryn € N

o
there exists some point (x,, o;) €K j,., \Kj,_, for which

g Cxn) 110" fn (xn) | exp (—mwz’; <|Z—|>> > n. (5.23)
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Now, we choose a function p € D, (R") such that suppp  B1(0) and p = 1 on
B, (0) for some 0 < r < 1. We define

go() =) ga)p(x —xp), x € RV (5.24)
k=1

Then by Remark 4.3 we have go € S, (RY). In  particular, go = g(x,) in B, (xp) for
each n € N. Accordingly, foreveryn € N, x € B,(x;) and « € Nf)v we have

3% (fgo)(x) = 9% f(x)g(xn).

Hence, by (5.23) it follows for every n € N that

Gm.m(fng0) > lg () 10%" fr(xn)| exp (ma)(x) _ m(p:) (|‘Zz|>>

> 1gGon) 187 f () exp (—mgo;“) (";')) > n.

This shows that sup feB qm.m(fgo) = oo, which is a contradiction because B is a
bounded subset of ((’)M,w(RN), 7s). Hence sup s g gm ¢ (f) < 00. m|

Finally, we have

Proposition 5.10 Let w be a non-quasianalytic weight function. Then (O .,(RN), 7p)
and its strong dual are nuclear lc-spaces. Moreover, (OM,w(RN ), Tp) is complete.

Proof Since S, (R") is a nuclear Fréchet space by [5, Theorem 3.3], the space
Ly (S,(RN)) and its strong dual space are nuclear Ic-spaces, [12, Corollaire 3, Chap.
I, §2, p.48]. Therefore, by [12, Théoreme 9, Chap. 11, §2, p.47] ((’)M,w(RN), 1) and
its strong dual are also nuclear lc-spaces.

It is straightforward to show the completeness of (OM,,U(RN ), Tp). m|
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