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I. Introduction

The note proposes a novel approach for single-axis pointing of an underactuated spacecraft
using only two reaction wheels (RW), based on a simple yet effective wheel rate command. The
control law can be used for aiming the line-of-sight of a sensor, a nozzle or an antenna towards a
target direction, or solar panels towards the Sun, after failure of one wheel for a non-redundant
control system hardware or in the case of multiple failures for redundant systems. Examples of
this kind of situation are the Far Ultraviolet Spectroscopic Explorer (FUSE) [1] and the Kepler
space telescope [2, 3]. Both spacecraft suffered from failures that left only two wheels available for
maneuvers. Failure of mechanical actuators is also expected to potentially affect low-budget space
missions based on small-size low-cost spacecraft (nano-, pico-, and cube-sat families).

The proposed control methodology represents the practical, dynamic implementation of the
kinematic planning scheme discussed in [4], under the assumptions of zero overall angular momentum

and triaxial inertia tensor. Under the zero-angular momentum hypothesis, the control law also
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provides three-axis stabilization at zero angular speed. Only rest—to—rest maneuvers are thus dealt
with, as a steady residual rotation rate around an arbitrary body—fixed axis cannot be attained
in general, unless the axis is principal of inertia and aligned with the spin axis of one of the two
active reaction wheels. The limited computational demand of the control law makes it a practical
solution also in the case of small-size satellites, where the computational budget is severely limited
by the available CPU processing capabilities. The effects of a non-zero residual angular momentum
and control axes not aligned with the principal axes of inertia is also investigated, highlighting
limitations on pointing precision and convergence performance.

The problem of spacecraft attitude control with two control torques is a relevant topic in the
literature. Tsiotras and Longuski [5] presented a methodology for constructing feedback laws for
attitude stabilization about the symmetry axis. Kim and Kim [6] also considered the problem
of spin stabilization of a spacecraft using two reaction wheels, exploiting the z-w parametrization
introduced by Tsiotras et al. [7] to derive a control law that globally asymptotically stabilizes
the spacecraft on a revolving motion around a specified inertial axis. A time-variant discontinuous
singular controller was proposed by Horri et al. for 3-axis attitude stabilization of a satellite with zero
angular momentum, when attitude is described by either Rodrigues parameters [8] or quaternions
[9]. Yoon and Tsiotras [10] considered a spacecraft equipped with a single VSCMG, deriving a
linear quadratic regulator (LQR) to locally stabilize spacecraft angular rate, while controlling the
direction of a given body-fixed axis in the inertial space. A multi-stage control law was suggested
to attain global convergence.

Avanzini and Giulietti [4] proposed a kinematic planning scheme for eigenaxis rotations that
allows for aiming a body-fixed axis 6 towards a prescribed direction 7, in the presence of constraints
on the admissible rotation axis, when there is a direction b around which a control torque component
is not available and angular velocity commands are thus constrained on a plane perpendicular to
b. The technique was recently extended [11] in order to determine a sequence of feasible rotations
with minimum total angular path, to be applied when the axis & is also required to stay away from
inadmissible directions, such as bright radiation sources that may harm sensor hardware.

In Refs. [4] and [11] the (sequence of) admissible rotation(s) is identified in terms of eigenaxis



gr, perpendicular to 5, and rotation amplitude &, in the framework of magnetic control, where
magnetic torquers are used as attitude effectors and the torqueless direction b is represented by
the geomagnetic field, prescribed in the orbit frame. Magnetic actuation results into an inherently
underactuated system, which severely limits its practical use. Nonetheless, an underactuated condi-
tion may also be the consequence of mechanical hardware failure, in which case the same planning
scheme can still be adopted, when a spacecraft is equipped with only two operational reaction wheels
and the torqueless direction b is prescribed in the body frame.

In this note, a smooth time-invariant wheel rate command is defined, based on angular mo-
mentum balance considerations, which causes the spacecraft to rotate approximately about the
admissible rotation axis gp, lying on the plane identified by the two RW axes, thus implementing
the kinematic planning scheme of Ref. [4] at a dynamic level. Convergence towards the prescribed
alignment under the action of the proposed control law is proven using a Lyapunov approach,
exploiting the cascade (triangular) nature of system dynamics. Asymptotic convergence in a finite
region around the desired final condition is proven first. Almost global attractiveness is then verified
over the entire phase-space, excluding a single unstable equilibrium point. As a further contribu-
tion, a modified version of the control law is also discussed, featuring a switching control logic, with
the objective of improving convergence speed. In this case control performance is assessed through
simulations. A stability proof is no longer pursued, because discontinuities introduced in the system
pose formal issues when using Lyapunov theory.

In the next Section, the satellite model is outlined and the main features of the kinematic
planning scheme are recalled. In Section III, the nominal control law is presented first, together
with a rigorous proof of its stability for the ideal case of zero-angular momentum. A modified
version of the control law is then introduced. In Section IV, performance of the two control laws is

investigated by means of numerical simulations. A Section of concluding remarks ends the note.



II. Problem statement and solution

A. Mathematical model
A satellite platform equipped with three identical reaction wheels is considered. Expressing all
vector quantities in a set of body-fixed axes, Fg = {G, é1, é2, €3} centered in the spacecraft center

of mass G, spacecraft attitude dynamics is described by the following equations of motion

TBN = —QX TBN (1)
w = J ' —wx (Jw+hy) —hy (2)
hw,i = Jsz = gi— waTdi; 1= 17 23 3 (3)

where Ty is the transformation matrix from inertial to body reference frame, w = (wy,ws,ws)”
is the inertial angular velocity vector, Q> is the cross-product equivalent matrix, such that Q*v =
w X U, hy; = Ju§2; is the relative angular momentum vector of the i-th reaction wheel, spinning
at a relative angular rate €; around the control axis a;, under the action of an electrical motor
torque g;, and J is the satellite inertia matrix (which includes wheel inertia at rest). The vector
h, = Z?Zl Jw$;a; is the total internal angular momentum. It is assumed that principal axes of
inertia are parallel to wheel spin axes, &; = a;, i = 1,2,3. Without loss of generality, it is assumed
that the underactuated axis is b = ;5. As a consequence, only two RW’s are available, with spin
axes parallel to €; and e, respectively.

When represented in Fp, the unit vectors b (the underactuated direction) and & (the axis
that needs to be pointed towards a prescribed direction) are both constant. At the same time the
angular position of the spacecraft about & is not relevant, as far as the single-axis-pointing problem
is concerned. Consequently, problem kinematics can be simplified by focusing on the analysis of the
motion of the inertially fixed target unit vector ¥ with respect to Fp, so that Eq. (1) is substituted

by the time derivative of 7 expressed in the body-fixed frame
F=-wx* (4)

Under the assumption of zero initial angular momentum and neglecting external torques, the

total angular momentum h = Jw + h,, remains constantly zero. A vector u = (Ul,UQ,ug)T of



(a) Relevant planes (b) Relevant angles

Figure 1 Geometry of the problem and notation for the planning scheme.

virtual controls u; = — (g; — J,&" @;) can be introduced, so that Egs. (2) and (3) reduce to
Jw=u (5)
by = —u (6)

In the absence of an active reaction wheel spinning around b = é3, the third component of the

angular velocity vector ws remains identically zero throughout the maneuver and h,, = —Jw.

B. Kinematic planning scheme

Following concepts and notation introduced in [4], a body-fixed axis ¢ need to be aligned with a
desired direction 7, starting from an initial condition such that é -7 = cos a. The desired alignment
can be obtained by means of an eigenaxis rotation of amplitude & around an axis g that belongs
to the plane ¥ defined by the unit vectors é,, = (6 x 7)/||6 x 7|| and éy = (6 + 7)/||6 + 7|
(Fig. 1.a), which identify the rotation axes of minimum (& = «) and maximum (& = 7) angular
travel, respectively. In order to allow for an admissible rotation, the eigenaxis must also belong to
the plane T", perpendicular to B, identified in the proposed scenario by the plane containing the spin

axes of the two active RW’s. Under the assumption of zero total angular momentum, both RW

torque and spacecraft angular speed are constrained on the plane I'. The error vector e; = 7 — & is



perpendicular to the plane Y, whereas the underactuated direction b is normal to the plane I' that
contains the admissible rotation axes. The admissible rotation axis is thus identified by the unit

vector

P G/ L1 (7)

which lies at the intersection of I' and . During the motion, & spans a portion of amplitude & of
the cone with axis equal to gp (Fig. 1.b). The idea at the basis of the present note is to derive an
angular rate command for the active wheels that results into a rotation of the spacecraft (almost

exactly) around the admissible rotation eigenaxis gr-.

III. Control law and proof of stability

The dynamic system of Egs. (4)-(5) exhibits a triangular (or cascade) structure, where the
angular speed w acts as a virtual input for the kinematics (outer system), whereas the virtual
control u represents the input torque to spacecraft dynamics (inner system). It is apparent that
any angular speed command can be tracked, provided that it has a zero component along the
direction of the failed axis, B, and it does not violate wheel rate saturation limits. In this respect,
a desired angular speed profile w, is sought first, which stabilizes the outer system. Next, a virtual
torque command u = u(w,) is derived for the inner angular rate control.

The proposed control law is defined by the following equations

wa = —ke(f— &) x b (8a)
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(8b)

where k; and k,, are positive gains.
Before deriving a rigorous proof of stability for the interconnected system, the properties of the
outer kinematic system are discussed, assuming that the angular velocity exactly matches wy. In

this case, upon substitution of Eq. (8a) into Eq. (4), the kinematic equation takes the form
FI. —kT%x[(%—&)xB] 9)

Note that the phase-space for the kinematic system is the compact two-dimensional set S? C R3,

representing the surface of a unit sphere in a three-dimensional Cartesian space, defined by the



axes of the body-frame Fg. The position of + on S? can be identified by means of two spherical
coordinates, ¢ and A. Without loss of generality, b is chosen as polar axis of S2. The equatorial
plane, A = 0, coincides with the plane of admissible rotation axes. The prime meridian, ¢ = 0, is
chosen so that & (fixed with respect to Fg) lies on it. The position of & is identified by its latitude,
As, which states its elevation above the plane of the two active RWs, &; and é,.

The dynamic system in Eq. (9) admits two fixed points in S?, namely P and Pg. The first

equilibrium corresponds to the desired alignment, 7 = &, whereas the second non-trivial, undesired,

equilibrium is such that ¥ — & || b. The latter case requires that the unit vectors b, 7, and &
lie on the same plane, with ¥ = &4, where 64 = 6 — 2(BT6') b. Figure 2 shows the vector field
of 7 resulting from Eq. (9), for an assigned direction &, to qualitatively highlight the stability of
the two equilibria. The equilibrium above the equator is clearly stable, whereas the other one is
unstable. Thus, when 67b > 0, (i.e., & belongs to the Northern hemisphere), the stable equilibrium
corresponds to the desired alignment, whereas the undesired equilibrium is unstable. When 6Tb<0
the two equilibrium points switch their positions. Provided that the sense of the failed axis b is
arbitrary, the direction of the vector can be reversed to obtain the case with BT o > 0. As a limit
case, when 67b = 0 the two equilibria merge on a point on the equator of S?, which is still globally

attractive, although it is no longer stable in the sense of Lyapunov.

A. Proof of stability
The proof of stability of the proposed control law, Eq. (8), is obtained by application of a
theorem taken from Ref. [12] (see Corollary 4.3), which provides sufficient conditions for global

asymptotic stability (GAS) of a triangular system.

Theorem 1 Consider the dynamic triangular system

&= f(zy) (10a)

Yy=g(y) (10b)

If A1) y =0 is GAS for (10a), A2) x = 0 is GAS for & = f (x,0), and A3) every solution of (10a)

is bounded for t > 0, then the system (10) is GAS.
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Figure 2 Velocity of ¥ on the unit sphere S? for the ideal case, w = w4, A\, = 60°; equilibria P
and Py are indicated by circle (o) and cross marks (x), respectively.

First of all, two error variables are introduced, namely ey = 7 — ¢ and €3 = wy — w, for pointing
direction and angular rate, respectively. By taking into account the control law proposed in Eq. (8),

the dynamic system given by Eqgs. (4)-(5) can be recast in error form as

€1 =k, (e1 xb) x (0 +¢€1)+exx (0+e1) (11a)

ég = —k‘wEQ (11b)

which clearly matches the form of Theorem 1. Almost global asymptotic stability of the controller is
proven, showing that all assumptions of Theorem 1 hold. Assumption Al is easily verified, provided
that Eq. (11b) represents a first-order stable dynamics for the angular rate error.

In order to verify assumption A2, one needs to prove that e; = 0 is GAS for the system
€1 =ks (61 X B) X (6 +¢e1) (12)

This is equivalent to the analysis of the stability for the equilibrium P of Eq. (9). Asymptotic
stability of the equilibrium P under the control law Eq. (8a) over a finite region A C S? can be
assessed considering the Lyapunov candidate function V; =1 — <&T+) =1 —cosa, where « is the

angular separation between & and 7, The function V; is clearly positive definite and proper. The



time derivative of V7 is given by
Vi =~k (1-67#) (#7b+57b) (13)

Clearly V; < 0 it is negative valued in A = {i’ €8%: BT T+ ET o> O}. The region A extends to
the section of 82 to the north of the parallel passing by 4. Inside A, Vi is null only for # = &, that
is, when &1 = 0. The equilibrium point P is thus asymptotically stable, with a domain of attraction
at least as large as the subset A of S2.

Analogously, one can prove that, assuming I;T o > 0, the equilibrium P is unstable under the
control law Eq. (8a). A “domain of divergence” can be determined using Lyapunov’s First Instability
Theorem (see [13], Theorem 3.12). If one considers the function Vo = 1 — (&i%) =1 — cosay,

such that V(64) =0, and V(7) > 0 for 7 # &4, its time derivative is given by

<

Vo = —kr (BT - BT&) (1-+764) (14)

It is easy to prove that Vy > 0, that is, the angular separation oy between 7 and 64 increases over
time when 7 € A% = {f' €S2 b b &< 0} \ {64}. For the sake of clarity, Fig. 3 illustrates
the regions A and A4 in the plane A — ¢. As a consequence of the instability of Py, all solutions
starting in the region A, at a finite distance from 64 leave the set A4 in a finite time. Moreover,
if &b > 0, then Ay N A # 0, that is, the region of divergence surrounding Py and the domain
of attraction of P overlap. As a result, P is almost GAS, provided that its domain of attraction
extends to S? \ {Pyx}. Assumption A2 is thus verified almost everywhere over S2.

Finally, it is necessary to prove that all the solutions of the interconnected system Eqs. (11) are
bounded. The error variable e; is the difference between two unit vectors, thus |e1]] < 2. On the

other hand, |le2(t)|| < |le2(to)|| because Eq. (11b) enforces a first-order stable dynamics. Recalling

the definition of €5 and boundness of €7, the chain of inequalities

le2 DI < lle2(to)ll = [l (to) — wa (to)l

< Jlw (to)ll + llwa (to)ll = llw (to) || + | kre1(to) x Bl| < f|w (to) ]| + 2k-

demonstrates that also assumption A3 holds. Therefore all hypotheses of Theorem 1 are satisfied,

and the origin of the cascade system (g1, €2) = 0 is almost globally asymptotically stable over S2.



The case 67 b = 0 deserves a specific discussion. As |67 b| — 0, the unit vectors & and 64 move
towards the equator of 82, the sets A and Ay shrink, and their overlapping region reduces. In the
limit circumstance of 67 b = 0, 6 and &4 coincide, the system Eq. (12) admits only one equilibrium
point on the equator, and the two sets A and A4 reduce to the Northern and Southern hemisphere
of 82, respectively. Both V; and V; vanish on the equator of S2, € = d.A = 9.Ay, but the angular
velocity command is non-zero everywhere except for 7 = 6. More precisely, the time derivative
for + € &, obtained from Eq. (9) for #7b = 0, is # = k. [+ (+ — &)]b, that is, parallel to b and

traversal to £. Provided that no trajectory lies on £ \ {6}, La Salle invariance principle guarantees

that ¥ = & is still globally attractive, although no longer stable in the sense of Lyapunov.
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Figure 3 Sketch of regions A (domain of attraction of stable equilibrium point P) and Ax

(domain of divergence for the unstable equilibrium Py).

B. Modified control law

When ‘&Ti)’ < 1, the magnitude of the desired angular speed Eq. (8a) becomes very small,
and the time needed to reach the equilibrium point grows. In this respect, it is possible to increase
convergence speed dividing the original control law by a quantity which becomes vanishingly small,

close to the equator, thus increasing the magnitude of the angular speed command. The modified

10



control law is given by

(15)

A formal proof by standard Lyapunov approach is not available, because the law in Eq. (15)
is singular on the set £ = 0.A and the sign of the angular velocity command switches across €.
Nevertheless, one can note that Eqgs. (8a) and (15) differ only by a positive scalar quantity in A,
and a negative scalar in A, thus turning the point 6 = 64 into a globally attractive point on S

in the limit case 676 = 0.

IV. Results

A spacecraft model taken from [8] is considered for demonstrating the viability of the proposed
approach, with an inertia tensor J = diag(40.45,41.36,42.09) kgm?. The active reaction wheels
have a moment of inertia J,, = 0.0077 kg m?. Values of the control gains, k., = 0.1 and k, = 0.05,
were selected by a trial-and-error procedure until a satisfactory convergence in terms of pointing
error was obtained, without violating saturation limits on wheel rotation rate.

In the absence of privileged directions, a fixed target direction 7; = (1,0,0)7 in the inertial
frame is assumed without lack of generality. Conversely, the position of the body-fixed axis & that
needs to be aligned with 7 has an influence on the response of the spacecraft, under the considered
control law. In the ideal case, spacecraft and reaction wheels are assumed to be at rest at the initial
time (wg = 0, ©;, = 0), in order to satisfy the assumption of total angular momentum equal to
zero during the maneuver. In order to test the control laws, Egs. (8a) and (15), in a more realistic
scenario, some cases were also run taking into account a non-zero residual angular momentum.

Figure 4 shows the simulation obtained using the nominal control law, for a (randomly specified)
initial attitude, described by the quaternion qgz; = (0.7792,0.1225, —0.1051,0.6056)7, and a value
of Ay = 30 deg. The variation of RW spin rates (Fig. 4.a) proves that the control law determines a
smooth response, while the pointing error o and the non-nominal rotation angle & asymptotically
converge towards zero, with an almost identical behavior and a convergence time in the order of
approximately 150 s (Fig. 4.b). Maximum control torque, achieved at the beginning of the maneuver,

is in the order of 0.2 N m. Peak values of control torques can be easily tailored by means of a proper

11



selection of control law gains

The nominal control law underperforms when A\, = 0 and & is perpendicular to b. As shown
in Fig. 5 by the solid line, the pointing error rapidly decreases from an initial value of 75 deg below
10 deg, before starting a very slow convergence towards zero. As many as 1200 s are necessary for
taking the pointing error below a 1 deg threshold, because of the small value of the desired angular
rate in the neighborhood of the desired direction. Conversely, the modified control law, Eq. (15)
(dashed line), provides a faster convergence: 400 s are sufficient for achieving a pointing error below
0.01 deg, at the expenses of a higher initial command torque, increased by approximately 40% in

the considered case.
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Figure 4 Simulation results for A\, = 30 deg and h = 0: (a) wheel rates and (b) pointing errors

for the nominal control laws (a: angular distance; &: angular travel).

Robustness of the modified control law has been further verified through extensive nymerical
simulation, by means of a Monte Carlo analysis based on 250 cases featuring initial random attitude
and random choice of &, for zero total angular momentum. Figure 6 shows the results of the analysis,
where the logarithmic scale highlights an exponential decay of pointing error for all the tested cases.

Finally, the effects of relevant situations for real application are considered, namely (i) a mis-
alignment between control axes and the principal axes of inertia and (ii) a small non-zero initial

residual angular momentum, which takes into account that h is brought close to zero during detum-

12
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Figure 6 Monte Carlo analysis: pointing error for the modified control law with h = 0.

bling or desaturation phases (e.g. using magnetic actuators), but it cannot be exactly canceled. In
the first case, the inertia tensor is not diagonal, but this fact has no practical effects on convergence.
Results are not shown, provided there are only minor differences with respect to the time-histories

already discussed for the nominal case.

As far as the single-axis pointing problem is concerned in the circumstance when h # 0, there

13
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Figure 7 Case )\, = 30 deg with h = 0.01 Nms: wheel rates and pointing errors for the nominal

control law (a: angular distance; &: angular travel).

is no apparent difficulty for the considered control law to exactly aim a body-fixed axis & towards a
desired direction 7, if the residual angular momentum is sufficiently small, in the order between 0.001
and 0.01 Nms, for the considered class of spacecraft. Figure 7 shows that a steady-state pointing
error in the order of few tenths of a degree is obtained for an initial value of h = (0.01, 0.01, 0.01)
Nums, as in [8]. However, aligning an arbitrary (non-principal axes of inertia) body-axis & towards
a given inertially-fixed direction may not be possible for higher values of h, when some regions of

the attitude space become not accessible, if spacecraft rotation rates need to be driven to zero.

V. Conclusions
The dynamic implementation of a kinematic planning strategy for single-axis pointing by means
of two reaction wheels was demonstrated. An almost global stability to the desired alignment of
a body-fixed axis towards an inertially-fixed direction was derived in the ideal conditions of zero
total angular momentum, no reaction wheel torque saturation and wheel spin axis aligned with the
principal axes of inertia.
The proposed control law generates an angular rate profile that tracks the desired rotation

around an admissible rotation axis, that is, a rotation axis that lies on the plane of the two active

14



reaction wheels. This control law is smooth and almost global convergent for any considered case.
As a minor drawback, slow convergence speed is obtained when the body-fixed axis to be pointed
in the prescribed direction lies on the plane of the active RWs. To overcome this issue, a modified
control law is also considered. Numerical simulation demonstrates the effectiveness of the proposed
approach for any initial configuration and also in non-ideal conditions, that is, when a small residual

angular momentum and a nondiagonal inertia tensor are considered.
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