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Abstract

The generalized Cesaro operators Cy, for ¢t € [0, 1], were first investigated in the 1980s. They
act continuously in many classical Banach sequence spaces contained in CN0, such as £, cg,
¢, bvg, bv and, as recently shown in Curbera et al. (J Math Anal Appl 507:31, 2022) [26], also
in the discrete Cesaro spaces ces(p) and their (isomorphic) dual spaces d),. In most cases
C; (t # 1) is compact and its spectra and point spectrum, together with the corresponding
eigenspaces, are known. We study these properties of C;, as well as their linear dynamics
and mean ergodicity, when they act in certain non-normable sequence spaces contained in
CNo, Besides CNo jtself, the Fréchet spaces considered are £(p+), ces(p+) and d(p+), for
1 < p < 00, as well as the (LB)-spaces £(p—), ces(p—) and d(p—), for 1 < p < oc.

Keywords Generalized Cesaro operator - Compactness - Spectra - Power boundedness -
Uniform mean ergodicity - Sequence space - Fréchet space - (LB)-space

Mathematics Subject Classification Primary 46A45 - 47B37; Secondary 46A04 - 46A13 -
47A10 - 47A16 - 47A35

1 Introduction

The (discrete) generalized Cesaro operators C;, for r € [0, 1], were first investigated by
Rhaly, [52]. The action of C; from w := CNo into itself (with Ny := {0,1,2,...})is given by
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xo+ 1" x4+ ... +x
Cix = ( - . X = (Xp)neN, € ®. (1.1)
n+1 neNy
For ¢t = 0 note that Cy is the diagonal operator
Dx’—(xn) X = (Xp)neN, € @ (1.2)
(24 n + l neNo ’ nJnelNgy ’ .

where ¢ = (n _}_1 )neNo’ and for t = 1 that Cy is the classical Cesaro averaging operator

<x0+X1+---+xn
Cix =
n+1

The spectra of C1 have been investigated in various Banach sequence spaces. For instance,
we mention £7 (1 < p < 00), [22,23, 30,401, ¢o [1, 40, 517, ¢ [40], £*° [50, 51], the Bachelis
spaces NP (1 < p < 00) [25], bv and bvg [47, 48], weighted €7 spaces [7, 10], the discrete
Cesaro spaces ces(p) (for p € {0} U (1, 00)), [24], and their dual spaces d; (1 < s < 00),
[19]. For the class of generalized Cesaro operators C;, for t € (0, 1), a study of their spectra
and compactness properties (in £2) go back to Rhaly, [52, 53]. A similar investigation occurs
for €7 (1 < p < o0)in [58] and for ¢ and ¢ in [55, 59]. The paper [55] also treats C; when it
acts on bug, bv, ¢, £, £*° and the Hahn sequence space /. In the recent paper [26] the setting
for considering the operators C; is a large class of Banach lattices in w, which includes all
rearrangement invariant sequence spaces (over Ny for counting measure), and many others.

Our aim is to study the compactness, the spectra and the dynamics of the generalized
Cesaro operators C;, fort € [0, 1), when they act in certain classical, non-normable sequence
spaces X C w. Besides o itself, the Fréchet spaces considered are ¢(p+), ces(p+) and
d(p+), for 1 < p < oo, as well as the (LB)-spaces £(p—), ces(p—) and d(p—), for
1 < p<oo.

In Sect. 2 we formulate various preliminaries that will be needed in the sequel concerning
particular properties of the spaces X that we consider, as well as linear operators between such
spaces. We also collect some general results required to determine the spectra of operators
T acting in the spaces X and the compactness of their dual operator 7’ acting in the strong
dual space X ;3 of X.

Section 3 1s devoted to a detailed study of the operators C;, for # € [0, 1), when they act in
w. These operators are never compact (c.f. Proposition 3.2) and their spectrum is completely
described in Theorem 3.7 where, in particular, it is established that the set of all eigenvalues

of C; is independent of ¢ and equals A := { nJlrl : n € Np}. The 1-dimensional eigenspace
1

corresponding to T for each n € Ny, is identified in Lemma 3.4.

The situation for the other mentioned spaces X C w, which is rather different, is treated in
Sects.4 and 5. The operator Cy, fort € [0, 1), is always compact in these spaces; see Theorem
4.5(i) for the case of Fréchet spaces and Theorem 5.3(i) for the case of (LB)-spaces. The
spectra of C; are fully determined in Theorems 4.5(ii) and 5.3(ii), and the 1-dimensional
eigenspace corresponding to each eigenvalue of C; is identified in Theorems 4.5(iii) and
5.3(iii). We note, for all cases of X and ¢ € [0, 1), that the set of all eigenvalues of C; is
again A. The main tool is a factorization result stating that C; = Dy R;, where Dy: X — X
is a compact (diagonal) operator in X and R;: X — X is a continuous linear operator; see
Propositions 4.4(iii) and 5.2(iii).

For the definition of a mean ergodic operator and the notion of a supercyclic operator we
refer to Sect. 6, where the relevant operators under consideration are C; acting in the spaces
X, foreacht € [0, 1). Itis necessary to determine some abstract results for linear operators in

) , X = (xn)neNo € w. (1.3)
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general IcHs’ (c.f., Theorems 6.2 and 6.4), which are then applied to C; to show that it is both
power bounded and uniformly mean ergodic in all spaces X # w; see Theorem 6.6. The same
is true for C; acting in w; see Theorem 6.1. In this section we also investigate the properties
of the dual operators C; acting in X }3 which are given by (6.6) and (6.8). The operators C;
are compact and their spectra are identified in Proposition 6.7, where it is also shown that the
set of all eigenvalues of C; is A. Moreover, for each n € Ny, the eigenvector in X }} spanning

the 1-dimensional eigenspace corresponding to # € A is also determined. A consequence
of C; having a rich supply of eigenvalues is that each operator C;: X — X, fort € [0, 1),
fails to be supercyclic. Moreover, it is established in Proposition 6.8 that C;: X /’3 —- X ;3
is power bounded, uniformly mean ergodic but, not supercyclic. It should be noted that the
main results in this section are also new for C; acting in the Banach spaces €7, ces(p) and
dy.

2 Preliminaries

Given locally convex Haudorff spaces X, Y (briefly, IcHs) we denote by £(X, Y) the space
of all continuous linear operators from X into Y. If X = Y, then we simply write £(X)
for £(X, X). Equipped with the topology of pointwise convergence 73 on X (i.e., the strong
operator topology) the IcHs £(X) is denoted by £ (X) and for the topology 75, of uniform
convergence on bounded sets the IcHs £(X) is denoted by £;(X). Denote by B(X) the
collection of all bounded subsets of X and by I"x a system of continuous seminorms determing
the topology of X. The identity operator on X is denoted by /. The dual operator of T € L(X)
is denoted by T’; it acts in the topological dual space X' := L(X, C) of X. Denote by
X, (resp., by X) the space X’ with the weak* topology o (X', X) (resp., with the strong
topology B(X’, X)); see [37, Sect. 21.2] for the definition. It is known that 7" € £(X]) and
T e L(X 1’3), [38, p. 134]. For the general theory of functional analysis and operator theory
relevant to this paper see, for example, [27, 33, 36, 44, 49, 56].

Lemma2.1 Let X be alcHs and T € L(X) be an isomorphism of X onto itself. Then T’ is
an isomorphism of X ;3 onto itself. If, in addition, X is complete and barrelled, then T is an
isomorphism of X onto itself if, and only if, T’ is an isomorphism of X ;3 onto itself.

Proof If T is an isomorphism of X onto itself, then T-' € £(X) exists with TT~! =
T-'T = I. It was already noted that 7', (T ) ¢ L(X/’g) and clearly (T~1)'T' =
T/(T~") = 1. Thus, (T")~" exists in £(X}) and (T")~" = (T~!)'; thatis, T” is an isomor-
phism of X //8 onto itself.

Suppose that X is also complete and barrelled and that 7’ € £(X /’3) is an isomorphism of
X ;3 onto itself. As proved above, T” is necessarily an isomorphism of X ,/3/ onto itself. By the
proof of Lemma 3 in [6] it follows that 7" is an isomorphism of X onto itself. This completes
the proof. O

Given a IcHs X and T € L(X), the resolvent set p(T; X) of T consists of all A € C
such that R(A, T) := (A — T)~! exists in £(X). The set o (T; X) := C\p(T; X) is called
the spectrum of T. The point spectrum o,,(T; X) of T consists of all . € C (also called
an eigenvalue of 7') such that (A\/ — T') is not injective. An eigenvalue A of T is called
simple if dimKer(Al — T) = 1. Some authors (e.g. [56]) prefer the subset p*(T; X) of
p(T; X) consisting of all A € C for which there exists § > 0 such that the open disc
B(A,68) :={ze€ C: |z—xA <8} € p(T;X) and {R(n,T) : n € B()A,98)} is an
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equicontinuous subset of £(X). Define o*(T'; X) := C\p*(T; X), which is a closed set with
o(T; X) C o*(T; X). If X is a Banach space, then o (T; X) = o*(T; X). For the spectral
theory of compact operators in IcHs’ we refer to [27, 33], for example.

Corollary 2.2 Let X be a complete, barrelled IcHs and T € L(X). Then
o(T; X) = p(T; X,"}) and o(T; X) =o(T; X%). 2.1)
Moreover,
o*(T'; X/g) Co*(T; X). (2.2)

Proof The identities in (2.1) are an immediate consequence of Lemma 2.1.

Fix A € p*(T'; X). Then there exists § > 0 such that B(A, 8) C p(T; X) and {R(u; T) :
nw € B(Xx,8)} € L(X) is equicontinuous. For each 1 € B(2, §) it follows from the proof
of Lemma 2.1 that R(u, T)Y = (ul — T)™Y = (ul = T")~' = R(u, T'). Then [38,
Sect. 39.3(6), p.138] implies that {R(ux, T') : u € B(A,8)} C [’(X//fi) is equicontinuous,
that is, A € p*(T’; X/’g). So, we have established that p*(T; X) C p*(T’; X},); taking
complements yields (2.2). O

Alinearmap 7: X — Y, with X, Y IcHs’, is called compact if there exists a neighbour-
hood U of 0 in X such that 7 (/) is a relatively compact set in Y. It is routine to show that
necessarily T € L£(X, Y). For the following result see [38, Sect. 42.1(1)] or [36, Proposition
17.1.1].

Lemma 2.3 Let X be a IcHs. The compact operators are a 2-sided ideal in L(X).

To establish the continuity of Cy, for ¢ € [0, 1], in the Fréchet spaces considered in this
paper we will need the following result, [14, Lemma 25].

Lemma24 Let X = N2, X, and Y = N7, Y, be two Fréchet spaces which resp. are the
intersection of the sequence of Banach spaces (X,, || - ||»), for n € N, and of the sequence
of Banach spaces (Yp, ||| - |llm), for m € N, satisfying X,,+1 C X,, with ||x||n < | x|ln41 for
eachn € Nand x € Xpq1 and Y1 C Yo with [[|ylm < II|¥|lm+1 for each m € N and
y € Yyut1. Suppose that X is dense in X,, for eachn € N. Then a linear operatorT: X — Y
is continuous if, and only if, for each m € N there exists n € N such that the operator T has
a unique continuous extension Ty, @ X, — Yp,.

The following result, based on [8, Lemma 2.1], will be needed to determine the spectra
of Cy, fort € [0, 1], in the Fréchet spaces considered in this paper.

Lemma2.5 Let X = N32 X, be a Fréchet space which is the intersection of a sequence of
Banach spaces (X, || - |In), for n € N, satisfying X,+1 C X, with || x||,, < ||x||ln+1 for each
neNandx € X,11. Let T € L(X) satisfy the following condition:

(A) For each n € N there exists T, € L(X,) such that the restriction of T, to X (resp. of
T, to X, +1) coincides with T (resp. with T, 11).

Then the following properties are satisfied.

(1) o(T; X) C U2 0(Ty; Xy) and 0 (T X) € N0 05 (Ts Xin).
(i) If U2 0(Ty; Xp) S o(T; X), theno™(T; X) = o (T; X).
(iii) Ifdimker(Al —T,,) = 1foreach h € N2 0, (Ty: Xy) andm € N, then op (T X) =
m;.lilapt(ﬂl; Xn)-
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Proof In view of [8, Lemma 2.1] it remains to show the validity of the inclusion o, (T'; X) €
N2 10pe (T, X,y) in the statement (i) and the identity in (iii).

The inclusion 0, (T; X) € M52, 0 (Ty; X,,) is clear. Indeed, if (\] — T)x = 0 for some
x € X\{0}and A € C,theninviewof X C X, and T,,|x = T, forn € N, (see condition (A)),
we have that x € X,,\{0} and (A\] —T,,)x = Oforeveryn € N.Hence, A € N2 0 (Tyi; X;).

To establish the validity of (iii), fix A € ﬂ;’lozlap,(Tn; X,,). Then, for each n € N, there
exists x, € X,\{0} such that (A\I — T;,)x,, = 0. Since x,+1 € X,+1 € Xp, forn € N,
condition (A) implies that also (A — T;,)x,+1 = 0 in X,, for each n € N. So, for each
n € N, we have that x,,11 = u,x, for some u, € C\{0}. Therefore, x, = (]_[?;i WXL,
with ]_[';;} mj # 0. Accordingly, x; € X, for each n € N and hence, x| € X. On the other
hand, applying again condition (A), we can conclude that (Al — T)x; = (A — T1)x; = 0,
ie, €0y (T; X). ]

Fréchet spaces X which satisfy the assumptions of Lemma 2.5 are often called countably
normed Fréchet spaces; for the general theory of such spaces see [29], for example.

A Hausdorff locally convex space (X, 7) is called an (LB)-space if there is a sequence
(X©)ken of Banach spaces satisfying Xy € Xy continuously for k € N, X = U2, Xy
and t is the finest locally convex topology on X such that the natural inclusion X C X is
continuous for each k € N, [44, pp. 290-291]. In this case we write X = ind ; Xy. If, in
addition, X is a regular (LB)-space, [36, p. 83], then a set B C X is bounded if and only if
there exists m € N such that B C X,, and B is bounded in the Banach space X,,,. Complete
(LB)-spaces are regular, [37, Sect. 19.5(5)]. All of the (LB)-spaces of sequences considered
in this note will be regular because of the following result, [44, Proposition 25.19(2)].

Lemma 2.6 Let X = ind Xy be an (LB)-space with an increasing union of reflexive Banach
spaces X = U]file such that each inclusion Xy C Xy41, for k € N, is continuous. Then X
is complete and hence, also regular.

An (LB)-space X = ind Xy is said to be boundedly retractive if for every B € B(X)
there exists k € N such that B is contained and bounded in X, and X and X; induce the
same topology on B. The (LB)-space X is said to be sequentially retractive if for every null
sequence in X there exists k € N such that the sequence is contained and converges to zero in
X Finally, the (LB)-space X is said to be compactly regular if for every compact subset C
of X there exists k € N such that C is compact in X. Each of these three notions implies the
completeness of X, [57, Corollary 2.8]. Neus [46] proved that all these notions are equivalent
even for inductive limits of normed spaces.

In the setting of boundedly retractive (LB)-spaces, the following general statement on the
compactness of certain dual operators is valid.

Proposition 2.7 Let X be a IcHs, Y = ind Yy be a boundedly retractive (LB)-space and
T € L(X,Y) be compact. Then T € L(Y}, X;j) is compact.

Proof The compactness of 7 implies that there exists a closed, absolutely convex neigh-
bourhood ¢ of 0 in X such that T (i) is a relatively compact set in Y. So, the closure
B :=TU) € B(Y) of T(U4) is a compact set in Y. But, ¥ is a boundedly retractive (LB)-
space. Accordingly, there exists k € N such that B is contained and bounded in Y}, and Y and
Yy induce the same topology on B. Therefore, B is also a compact setin Y and 7' (X) C Y.
Accordingly, the operator T acts compactly from X into Y. Denote by 7} the operator T
when interpreted to be acting from X into Yj and by i the continuous inclusion of Yy into Y.
So, T1 € L(X, Yx) is compact and T = i, T1. Denote by p the continuous seminorm on X
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corresponding to{ and let X, denote the normed quotient space (%rp, p). Then there exists
a unique continuous linear operator S from X, into Yy such that SQ = T;, where Q denotes
the canonical quotient map from X into X, and hence, is an open map. Since T1 € L£(X, Yx)
is compact and Q € L£(X, X ) is open, the operator § € £(X,, Y) is necessarily compact.
By Schauder’s theorem, [38, Sect. 42(7), p. 202], it follows that §” € E(Yk/, X’ ;) is compact.
So, T{ = Q'S" € L(Y], X;s) is compact and hence, T’ = T}i; € E(Y X/ p) 1s compact (cf.
Proposition 17.1.1 in [36]). This completes the proof. O

A Fréchet space X is said to be quasinormable if for every neighbourhhod ¢/ of 0 in X
there exists a neighbourhhod V of 0 in X so that, for every ¢ > 0, there exists B € B(X)
satisfying V C B + eU. Thus, every Fréchet-Schwartz space is quasinormable [44, Remark,
p- 313]. The strong dual X /’3 of a quasinormable Fréchet space X is necessarily a boundedly
retractive (LB)-space [18, Theorem]. Thus, the strong dual of any Fréchet-Schwartz space
(briefly, (DFS)-space) is a boundedly retractive (LB)-space.

Corollary 2.8 Let X and Y be two Fréchet spaces and T € L(X,Y). If T" € L(X/}, Yg) is
compact, then T is compact.
If, in addition, X is quasinormable and T is compact, then T" € L(XFg, " Yg ) is compact.

Proof Suppose that T” € L(X'}, Yf’{ ) is compact. Since X, Y are Fréchet spaces, they are
isomorphic to their respective natural image in X g, Y/ (in which they are closed subspaces).
Moreover, the restriction of 7”7 to X coincides with T and takes its valuesinY C Y f’}’ Then
the compactness of T follows from that of 7"

Suppose that X is quasinormable and that T € £(X, Y) is compact. Since X is quasi-
normable, its strong dual X ;j is a boundedly retractive (LB)-space. Moreover, Y being a
Fréchet space implies that 7" Yé - X ,’3 is compact, [27, Corollary 9.6.3]. It follows from
Proposition 2.7, with Y / in place of X and X;S in place of Y = ind ;Y and T’ in place of T,

that 7" € £(X” Y”) 1s compact. |

To identify the spectrum of C; acting in the (LB)-spaces arising in this paper we will
require the following two results; the first one, i.e. Lemma 2.9, is a direct consequence of
Grothendieck’s factorization theorem (see e.g. [44, Theorem 24.33]), and the second one,
i.e. Lemma 2.10, is proved in [11, Lemma 5.2].

Lemma29 Let X =ind, X, and Y = ind ,,Y,, be two (LB)-spaces with increasing unions
of Banach spaces X = U2 | X, andY = U Y. Let T: X — Y be a linear map. Then T
is continuous (i.e., T € E(X Y)) if and only if for each n € N there exists m € N such that
T(X,) C Yy, and the restriction T : X,, — Y, is continuous.

Lemma 2.10 Let X = ind ; Xy be a Hausdorff inductive limit of a sequence of Banach spaces
(X, || - lx)- Let T € L(X) satisfy the following condition:
(A7) For each k € N the restriction Ty, of T to Xy maps Xy, into itself and T, € L(Xy).
Then the following properties are satisfied.

(1) op(T; X) = U;{’O:lo'pt(Tk; X).
(i) IfUpe,,o(Ti; Xi) O‘(T X) for some m € N, then o*(T; X) = o(T; X).
(i) o (T; X) C Npen (U0 (Tu: X))-

n=m

Another useful fact for our study is the following result.
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Lemma 2.11 LetT € L(w). Let X be a Fréchet space or an (LB)-space continuously included
inw. IfT(X) C X, then T € L(X).

Proof The result follows from the closed graph theorem, [44, Theorem 24.31], after recalling
that X is ultrabornological, [44, Remark 24.15(c) & Proposition 24.16] and has a web, [44,
Corollary 24.29 & Remark 24.36]. So, it is enough to show that the graph of T in X is closed.
To do this, we assume that a net (xy), < X satisfies x, — x and T (x,) — y in X. Since
the inclusion X C w is continuous, x, — x in w and hence, T (xy,) — T (x) in w. On the
other hand, by the continuity of the inclusion X C w also T'(xy) — y inw. Then T'(x) = y.
So, (x, y) belongs to the graph of 7. This shows that the graph of T is closed. O

For X abarrelled IcHs, every bounded subset of £, (X) is equicontinuous, [44, Proposition
23.27]. It is known that every Fréchet space is barrelled, [44, Remark, p. 296], and that every
(LB)-space is barrelled, [44, Proposition 24.16].

The operator norm of a Banach space operator T € £(X, Y) will be denoted by || T || x—y-
The Banach spaces ¢7 = £”(Np), for 1 < p < oo, with their standard norm || - ||, are
classical. For 1 < p < oo these spaces are reflexive. The spectra of C; acting in such
spaces are given in the following result; see [58] for 1 < p < oo and also [55, Sect. 8] for
1 < p < oo. Recall from Sect. 1 that

1
A=1——:neNyt.
{n+1 " O}

Proposition 2.12 Foreacht € [0, 1) the operator C; € L(LP), for 1 < p < 00, is a compact
operator satisfying

1 1
ICllpr ot = ;log (j) , te(0,1),

1
and
0 MNP 1/p . | Uy
(2:; (n+1> ) <|ICiller—er < <;log <ﬁ>> ,1<p<oo, te(01),

with ||Co|lep—¢r = 1. Moreover,
0pi(Cr; £P) = A and o (Cy; £7) = A U{0}. (2.3)

Concerning the classical Cesaro operator Cp (c.f. (1.3)) in £(£”) we have the following
result.

Proposition 2.13 Let 1 < p < oo.

(i) The operator Cy € LLP) with ||Cy|l¢p—¢r = p’, where % + 7= 1.
(i1) The spectra of C1 are given by
/
)

v
.

/
-2
2

(SRS

0pi(C1;€7) =0 and o(Cy; LP) = {z eC:

/
Moreover, the range (C1 — zI)(£P) is not dense in £P whenever |z — %| <

For part (i) we refer to [34, Theorem 326] and for part (ii) see [30, 40, 54] and the references
therein. In particular, C is a not a compact operator.
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G. Bennett thoroughly investigated the discrete Cesaro spaces
ces(p) :={xew: Cilx| €tl}, 1< p<oo,

where |x| := (|x,|)nen,, Which satisfy £ C ces(p) continuously and are reflexive Banach
spaces relative to the norm

Ixllces(py = IC1lx[llp. X € ces(p); 24

see, for example, [17], as well as [15, 24, 31, 41] and the references therein. The following
result, [26, Proposition 5.6] describes the spectra of C; acting in ces(p).

Proposition 2.14 Lett € [0, 1) and 1 < p < oo. The operator C; € L(ces(p)) is compact
and satisfies

. 1 P
||CI||ces(p)~>ces(p) < min {i’ ﬁ} .

Moreover,

0t (Cr;ces(p)) = A and o(Cy; ces(p)) = A U {0}. 2.5)

The situation for Cy € L(ces(p)) is quite different. Indeed, [|C1 [|ces(p)—ces(p) = p’ and
the spectra are given by

/ /
051 (Cr;ces(p)) =¥ and o(Cy;ces(p)) = {z eC: |z—- % < %}
foreach 1 < p < o0o;see Theorem 5.1 and its proof in [24]. In particular, C| is not a compact

operator.

The dual Banach spaces (ces(p))’, for 1 < p < oo, are rather complicated, [35]. A more
transparent isomorphic identification of (ces(p))’ is given in Corollary 12.17 of [17]. It is
shown there that

dp:=:xe€°°:)€:=<sup|xk|> GZP], 1 <p<oo,
kzn neNy

is a Banach space for the norm
lxlla, = I€llp, x €dp, (2.6)

which is isomorphic to (ces(p’))’, where p’ is the conjugate exponent of p. The sequence X
is called the least decreasing majorant of x. The duality is the natural one given by

o0
(w, x) == anxn, w € ces(p), x €d,.
n=0

In particular, d,, is reflexive for each 1 < p < oo. Since |x| < |X|, it is clear that ||x]|, <
%1, = lxlla,, for x € dp, thatis, dp < £P continuously. So, for all 1 < p < oo, we have
d, € £P C ces(p) with continuous inclusions. The following result is Theorem 6.9 of [26].

Proposition 2.15 Lett € [0, 1) and 1 < p < oo. The operator C, € L(d)) is compact and
satisfies

ICldy—a, < (1 =1~ =0/P),
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Moreover,
0pt(Cridp) = A and o(Cy;dp) = AU{0}. 2.7

Concerning the operator Cy € L(dp), 1 < p < 00, itis known that [|Cy [|g,—~d, = p’ and
that its spectra are given by

p/
77— —

0p1(C1;dy) =9 and o (Cy;d)y) = {z eC: >

see Proposition 3.2 and Corollary 3.5 in [19].

3 The operators C; acting in ®

Given an element x = (x,),eN, € @ we write x > 0if x = |x]| = (|x4nen,. By x < zit
is meant that (z — x) > 0. The sequence space w is a non-normable Fréchet space for the
Hausdorff locally convex topology of coordinatewise convergence, which is determined by
the increasing sequence of seminorms

ra(x) = ogla§ lxjl, x€w, 3.1)
<j=n

for each n € Ny. Observe that r, (x) = r,(|x]) < r,(|y|) = r,(y) whenever x, y € w satisfy
|x] < |y|. Let e, := (8)) jen, for each n € Ny and set £ := {e,, : n € Np}. It is clear from
(1.1) that each C;: @ — w is a linear map which is represented by a lower triangular matrix
with respect to the unconditional basis £ of w. Namely,

1 0 0 0
2 1)2 0 0 .-
C, ~ 2/3  t/3  1/3 (/) (3.2)

B4 12/4 0 /4 174

with main diagonal the positive, decreasing sequence given by

1
Q= ( ) € C(. (33)
n+1 neNy

The following properties of C; are recorded in [26, Lemma 2.1], except for part (iv).

Lemma3.1 Lert € [0, 1).

(i) Each C; is a positive operator on w,i.e., Cyx > 0 whenever x > 0.
(i1) LetO <r <s < 1. Then

0 <[Crx| = Crlx] = Cslx], x €.

(iii) Foreacht € [0, 1) the identities

o k
! 1
Cten 227k+n+1€k+n c/ , n GNO,
k=0
and .
C[(en — [€n+l) = men, ne N(),
are valid.
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(iv) Foreach1 < q < oo we have dg € £9 C ces(q) C w with continuous inclusions.

Proof (iv) In view of the discussion after (2.6) it remains to establish that ces(q) € w
continuously. Fix x € ces(q). Given n € Ny observe that

[xo| + lx1| + -+ + [xnl

lxk] < (m+1) P <@+ DICilx[lg = (n+ Dllxllces(q)> 0 <k <n.
Itfollows from (3.1) thatr,, (x) < (n+1)[lx]|ces(q)- Since n € Ny is arbitrary, we can conclude
that ces(q) € w continuously. ]

The classical Cesaro operator C1: w — w is a bicontinuous topological isomorphism
(and hence, is not a compact operator) with spectra given by

0(C1;w) =0p(C1;0) = A and *(C1; w) = AU{0};

see [8, p. 285 and Proposition 4.4]. So, we will only consider the case 7 € [0, 1).
Lett € [0, 1) and fix n € Np. According to (1.1) and (3.1), for each x € o, it is the case
that

rp(Crx) = max
0<k<n

kt
; n 4
k+1Z 0<k<nk+12'“—’<x> 64

This implies that C; € L(w) and that the family of operators {C; : ¢t € [0, 1)} is an
equicontinuous subset of L(w).

Proposition 3.2 For eacht € [0, 1) the operator C; € L(w) is a bicontinuous isomorphism
of w onto itself with inverse operator (C;)~': w — w given by

(C)7'y = (4 Dyn — ntyp—1neny, ¥ € @ (with y_y := 0). 3.5

In particular, C; is not a compact operator.

Proof Fix t € [0, 1). Let x € w satisfy C;x = 0. Considering the coordinate 0 of C;x = 0
yields xo = 0; see (1.1). The equation for coordinate 1 of C;x = 0 is % =0 (cf. (1.1))
which yields x; = 0. Proceed inductively for successive coordinates reveals that x,, = 0 for
all n € Ny. Hence, C; is injective.

Given y € w let x € w be the element on the right-side of (3.5). Direct calculation shows
that C;x = y. Accordingly, C; is surjective.

By the open mapping theorem for Fréchet spaces (cf. Corollary 24.29 and Theorem 24.30
in [44]) the operator C; is a bicontinuous isomorphism.

Since C; is a bicontinuous isomorphism of @, which is an infinite dimensional Fréchet
space, C; cannot be a compact operator. O

To determine the spectrum of C; € L(w) requires some preparation. Define

S:= {x €w: B(x):= lim |x"+|1| < 1}, (3.6)

n—00 |xn

with the understanding that there exists N € Ny such that x, # 0 forn > N and the limit
B(x) exists. Analogously to d),, for I < p < oo, define

dy = {x €l®: fi= (suplxkl) € zl}; (3.7)
kzn nENo
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see [17, 19, 24, 31] and the references therein. Then d; is a Banach lattice for the norm
lx[lg, :== lI%]l1 and the coordinatewise order. Since 0 < |x| < X, for x € £*°, it is clear that
lxll1 < llx|lg, for x € dy, thatis, di € ¢! with a continuous inclusion. Clearly, d; < dp,
forall 1 < p < oo, and d; < 2! implies that d; € €7, for all 1 < p < oo. Moreover,
£P C ces(p) (cf. Section2) and so also d; C ces(p), for 1 < p < oco. All inclusions are
continuous. In view of Lemma 3.1(iv) it is clear that d; € w and ' Cw continuously. It is
known that S C dj, [26, Lemma 3.3].

Remark 3.3 Proposition 2.15 is also valid for p = 1; see [26, Theorem 6.9].
The following result, [26, Lemma 3.6], will be required.

Lemma3.4 Lett € [0, 1) and ¢ be as in (3.3). For each m € N define xtml e o by
m+1D! (m+2)! , (m+3)! 5 )

(3.8)

[m] . _
* "“’”(0""’0’1’ mil w2l 3

with o, € C\{0} arbitrary, where 1 is in position m. For m = 0 define x0 .= g (") neny
with ag € C\{0} arbitrary.

(i) For each m € Ny, the vector x" is the unique solution in w of the equation C;x =
OmX = %Hx whose m-th coordinate is ay,.

(ii) The vector xI™! € d; C w, for each m € Ny.

Remark 3.5 Lett € [0, 1) and X be any Banach space in {Kl,dl}U{Kp, ces(p),dp: 1 <p<
oo}. Foreachv € 0, (C;; X) = A, itis the case that dim Ker(v/ —C;) = 1.Indeed, d| C X;
see the discussion prior to Remark 3.3. Given v € A there exists m € Ny such that v = ¢,,.
According to Lemma 3.4 the 1-dimensional eigenspace corresponding to v € 0, (Cy; @) is
spanned by x["! with x["] € ;. The claim is thereby proved.

The next lemma places a restriction on where o (Cy; w) can be located in C.

Lemma3.6 Lett € [0,1). For each v € C\A the operator C; — vl is a bicontinuous
isomorphism of w onto itself. In particular, 0 (Cy; w) C A.

Proof Fix v ¢ A. Let (C; —vl)x = 0 for x € w. It follows from (3.2), by equating the
coordinate 0 of C;x = vx, that xo = vx( and hence, as v # 1, that xo = 0. Equating the
coordinate 1 of C;x = vx yields % = vxy. Since xg = O and v # %, it follows that
x1 = 0. Considering coordinate 2 gives tz)“m%“z = vxp. Then xg = x; = O and v # %
imply x» = 0. Proceed inductively to conclude that x = 0, thatis, C; — v/ is injective.

To verify the surjectivity of C; — v fix y € w. It is required to show that there exists
x € w satisfying (C; — vI)x = y. Equating coordinate 0 gives xo — vxo = Yo, that is,
X0 = yo/(1 —v). Considering coordinate 1 yields ”‘70 + (% —v)x; = y;. Substituting for xo
gives (% —V)x| =y — ﬁyo, that is,

»n o Yo
G-v 2G-va-v

. . . 2 ..
Next, an examination of coordinate 2 yields %xo + %xl + (% — V)x3 = y;. Substituting for
xo and x; we can conclude that

x| =

_ 1 n vi®yo
2= 1 1 1

-0 3G-0E-9 30— 0E-a-w
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Continuing inductively yields

Yn Iyn—1
= 1 +
(m—v> (n—l—l)(m—v)(f—v)
+ tzyn1—2 l
(n+1) <n+1 - V) G —v) (m - ")
11)2t3yn_3 1 ] L
(”+1)(m_">(z—”)<m—V)(m—">
1)n—ltn
+ (=1 1 0 1 . (3.9)
(n—l—l)(m—v)(f—v)...(j—v)(l—v)
Then x € w satisfies (C; — vI)x = y. Hence, C; — vI is surjective. ]

Combining the previous results yields the main result of this section.

Theorem 3.7 Foreacht € [0, 1) the spectra of C; € L(w) are given by
0(Cr;w) =0p(Crs0) = A
with each eigenvalue being simple, and
o™(Cs; w) = A U{0).

The 1-dimensional eigenspace corresponding to the eigenvalue 1/(m + 1) € A is spanned
by x™ (¢f. (3.8)), for each m € N.

Proof 1t is clear from Lemma 3.4 that A € 0,;(C;; w) and that each point 1/(m 4+ 1) € A
is a simple eigenvalue of C;, whose corresponding eigenspace is spanned by x"!, for each
m € Ny. Since 0 (Cy; w) € A (cf. Lemma 3.6) and 0, (Cy; w) € 0 (Cy; w), we can conclude
that 0 (C;; ) = 0 (C;; w) = A. The containment o (C;; w) € 0*(Cy; @) and the fact that
0*(Cy; ) is a closed set imply that 0 € o*(C;; w).

It remains to show that every v ¢ (A U {0}) belongs to p*(C;; w). So, fix v ¢ (A U {0}).
Select § > 0 such that the distance € of B(v, §) to the compact set A U {0} is strictly positive.
It follows from 0 < ¢ < 1 and the identity (3.9) which is coordinate n of (C, — vI)~ !y, for
each y € w, that for any given k € Ny there exists My > 0 such that

M .

-1 k

n((Co—pnh)™y) = o (Oré}?kaVI’> re(y), m€ B3,

where ry is the seminorm (3.1), with k in place of n. This implies that {(C; — uh™' e
B(v, §)}isabounded setin L (w) and hence, by the barrelledness of w, it is an equicontinuous
subset of L(w). Accordingly, v € p*(Cy; w). |
4 C; acting in the Fréchet spaces £(p+), d(p+) and ces(p+)

Given 1 < p < oo, consider any strictly decreasing sequence {pr}reny < (p, 00) which
satisfies px | p. Then Xj := £P* satisfies Xr4+1 C X with ||x[lgre < ||x|lgres1 for each

k € Nand x € X;11. Moreover, X = N2, Xy (i.e., £(p+) := N2, £P*) is a Fréchet space

@ Springer



Spectral properties of generalized Cesaro operators... Page130f33 140

of the type given in Lemma 2.5 whose topology is generated by the increasing sequence of
norms uy, for k € N, given by

Ug: x = ||xllerx, x € L(p+). 4.1)

That is, uy < ui41 for k € N. Moreover, pr > p implies that the natural inclusion map
£(p+) < £Pk is continuous for each k € N. Clearly the Banach space £/ < {¢(p+)
continuously and also £(p+) € w continuously, as £9 C w continuously, for every 1 < g <
oo (cf. Lemma 3.1(iv)). The space £(p+) is independent of the choice of {pi }xen.

Changing the Banach spaces, now let Xy := ces(px), in which case again X341 C X
with |lxllces(pr) < X lces(prrr) TOr each k € N and x € Xyy1; see [13, Proposition 3.2(iii)].
Then X = NP2 Xy (i.e., ces(p+) := NZ2  ces(pr)) is a Fréchet space of the type given in
Lemma 2.5 whose topology is generated by the increasing sequence of norms vy, fork € N,
given by

Vgt X > (IXllces(pr), X € ces(p+). 4.2)

That is, vy < vg4+1 for k € N. Again ces(p) € ces(p+) (if p > 1) and ces(p+) C w
with both inclusions continuous, where we again use Lemma 3.1(iv). The Fréchet spaces
ces(p+), for 1 < p < oo, have been intensively studied in [9, 14].

Finally, consider the family of Banach spaces X; := dj,, in which case X311 € X
with ||x||dpk < ||x||dpk+1 for each k € N and x € Xj41; see [19, Proposition 5.1(iii)]. So,
X =2, Xk (ie., d(p+) := NP2, dp,) is a Fréchet space of the type given in Lemma 2.5
whose topology is generated by the increasing sequence of norms wy, for k € N, given by

wi: x > xlla, ., x €d(pt). (4.3)

That is, wi < wyy for k € N. With continuous inclusions we have d, C d(p+) C w; see
[20, Sect. 4] or, argue as for £7 and £(p+).

It is known that the canonical vectors £ belong to £(p+), d(p+) and ces(p+), for 1 <
p < 0o, and form an unconditional basis in each of these spaces; see [20, Proposition 3.1],
[20, Lemma 4.1] and [9, Proposition 3.5(i)], respectively.

In this section we consider the compactness and determine the spectra of C; when they act
in the Fréchet spaces £(p+), d(p+) and ces(p+), for 1 < p < oo. The decreasing sequence
{ Pk }xen always has the properties listed above. Crucial for the proofs is the existence of a
particular factorization available for C; (cf. Proposition 4.4).

The decreasing sequence ¢ given in (3.3) satisfies ||¢|lc = 1. Define the linear map
Dy: w — wby

X,
Dyx = (g0, P1X1, 92X2, ...) = ( L ) , XEw. 4.4)
n+1 neNy

The diagonal (multiplication) operator D, € L(w) since, for each n € Ny,
Tn(Dpx) < 1y(x), x € w,
where r,, is the seminorm (3.1). Define the right-shift operator S: v — w by
Sx := (0, xg, x1,...), X €w. 4.5)

For each n € N note that 7, (Sx) = maxo<k<n |Xx| < r»(x) and forn = 0 that 7o(Sx) =0 <
ro(x) for each x € w. So, for every n € Ny, the operator S satisfies

m(Sx) <r,(x), x € o, 4.6)
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which implies that S € £(w). The following result is Lemma 2.2 in [26].

Lemma 4.1 Foreacht € [0, 1) we have the representation
o0
Ci=) 1"D,S"
n=0
with the series being convergent in Lg(w). Equivalently,

o0
Cix = ZI”D(pS"x, X €w,
n=0

with the series being convergent in w.
Fix t € [0, 1) and x € w. For each n € Ny it follows from (4.6) that

[e.¢] o¢] 1
n <I§ lkSkx) < Zrn(tkSkx) < - [rn(x).

k=0

Accordingly, the series
o0
Ro:=)_1"S", tel0,1), (4.7)
n=0

is absolutely convergent in the quasicomplete IcHs £, (w). In particular, R; € L(w). Com-
bining this with Lemma 4.1 and the fact that D, € L(w) yields the following factorization
of Ct .

Proposition 4.2 For each t € [0, 1) the operators Dy, R, C; belong to L(w) and

o0
Ci=DyR =) 1"D,S", (4.8)
n=0

with the series being absolutely convergent in Ls(w).

Our aim is to to extend Proposition 4.2 to £(X) with X € {{(p+), ces(p+),d(p+) :
1 < p < o0}, to show that Dy, € £(X) is compact and then to apply Lemma 2.3 to conclude
that C; € L£(X) is compact.

Proposition 4.3 Let X be any Fréchet space in {£(p+), ces(p+),d(p+) : 1 < p < oo}.
Then Dy, maps X into X and Dy, € L(X) is compact.

Proof Recall that ¢ € ¢o with ||¢|lecc = 1. We consider each of the three possible cases for
X. It was shown above that D, € L(w) and that X C w continuously.

(a) Suppose that X = £(p+) for some 1 < p < oo. Clearly, D, (Xy) € X for each
k € Nand so D, € £L(X); see Lemma 2.11. In the notation of [14] it is clear from (4.4) that
D, is precisely the multiplication operator M, defined there. Such a multiplication operator
is compact if and only if ¢ € £(co—) = U= 1€, [14, Proposition 17], which is surely the
case as ¢ € 2, for example. So, Dy € L(£(p+)) is a compact operator.

(b) Suppose that X = ces(p+) forsome 1 < p < co. It follows from (2.4) that D, (Xy) €
Xy foreach k € Nand so Dy: X — X.Lemma 2.11 yields that M, = D, € L(ces(p+)).
Moreover, if ¢ € d(00—) = U, 1dy, then My, is also compact, [14, Proposition 10]. But, ¢
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is a positive decreasing sequence and so ¢ = @. Accordingly, by choosing s = 2 say, we see
that

lella, = ll@ll2 = llell2 < oo.

Hence, ¢ € d; € d(co—) and so Dy = M, € L(ces(p+)) is indeed compact.

(c) Suppose X = d(p+) for some 1 < p < oo. Since |Dyx| = Dylx| < |x]|, for
x € £°°, itis clear thatﬁ(p\x < X.Then (2.6) implies that D, (X;) € X for all k € N and so
Dy: X — X.Again Lemma 2.11 yields that D, € L(d(p+)). Note that the operator M:;(p +)
in [21] is precisely Dy : d(p+) — d(p+). It was verified in (b) above that ¢ € d(c0—)
which, together with D, € L£(d(p+)), implies that D, is compact, [21, Theorem 4.13(i)]. O

Proposition 4.4 Lett € [0, 1), and X be any Fréchet space in {€(p+), ces(p+),d(p+) :
1 <p < ool

(1) The generalized Cesaro operator C; maps X into itself and C; € L(X).
(ii) The right-shift operator S given by (4.5) maps X into itself and belongs to L(X).
(iii) The operator R; given by (4.7) maps X into itself and belongs to L(X), with the series
Z?zo:o t"S" being absolutely convergent in L;(X). Moreover,

C, = DyR, = ZtDS"

Proof (i) Again we consider the three possible cases for X. Fix ¢t € [0, 1). According to
Proposition 3.2 the operator C; € L(w).

(a) Suppose that X = £(p+) for some 1 < p < oo. Proposition 2.12 implies that
C;(Xy) C Xy forall k € N, with X = €PF, and so C;(X) C X. In view of Lemma 2.11,
with T := Cy, it follows that C; € L(£(p+)).

(b) Suppose that X = ces(p+) for some 1 < p < oo. Proposition 2.14 shows that
Ci(Xy) C Xy forall k € N, with X3 = ces(pr), and so C;(X) € X. Again, for T := Cy,
Lemma 2.11 implies that C; € L(ces(p+)).

(c) Suppose that X = d(p+) forsome 1 < p < oo.Proposition 2.15 shows that C; (Xy) C
Xy for all k € N, with Xy = d),, and so C;(X) C X. Yet again, for T := C;, Lemma 2.11
implies that C; € L(d(p+)).

(i1) Again we check the three separate cases for X. Prior to Lemma 4.1 it was shown that
S € L(w).

(a) Suppose that X = ¢(p+) for some 1 < p < oco. Using the fact that the Banach space
right-shift operator S: ¢P* — £Pk is an isometry, for every k € N, we see that S(X) C X. It
follows that S € L(£(p+)); see Lemma 2.11 for T := S € L(w).

(b) Suppose that X = ces(p+) for some 1 < p < oo. It is known, for each k € N, that
S € L(ces(pr)) and || Sllces(pr)—ces(pe) < 1, [26, Lemma 5.4]. Accordingly, S(X) € X and
so Lemma 2.11, for T := S € L(w), implies that S € L(ces(p+)).

(c) Suppose that X = d(p+) forsome 1 < p < co.Fixk € N.Itisknownthat S € L(d),)
and

1S™ lldy, —dy, = (m + D75, m € N, (4.9)

[26,Lemma 6.2]. For m = 1 we can conclude that S(d),,) C d,, fork € N, thatis, S(X) C X.
So, in view of Lemma 2.11, for T := § € L(w), it follows that S € L(d(p+)).

(iii) (a) Suppose that X = £(p+) forsome 1 < p < oo.Fixk € Nand x € £(p+) C £Pk.
It follows from S being an isometry in £7% that u (S"x) = ug(x) for all n € Ny and hence,
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that
o0 o0 1
Zuk(t”S”x) = Zt”uk(S"x) < up(x) < oo.
n=0 n=0 1-1¢

Accordingly, the series ZZO:O t"S"x is absolutely convergent in the Fréchet space £(p+)
for each x € €(p+). By part (ii) the sequence {> o 1" S"}nen, S LE(p+)) and so, by
the Banach-Steinhaus theorem (as £(p+) is barrelled), the series Zzio t"S™ is absolutely
convergent in L (£(p+)); its sum is denoted by R; € L(£(p+)).

It has been established that each of the operators C;, Dy, R; belongs to L(£(p+)). The
identities C; = DyR; = Zﬁo "Dy S" are valid in L(£(p+)) because they are valid in
L(w); see Lemma 4.1 and both (4.7) and (4.8).

(b) Suppose X = ces(p+) forsome 1 < p < oo.Fixk € Nandx € ces(p+) C ces(pr).
Using [|8" [|ces(pr)—ces(p) < 1, foralln € Ny (see the proof of part (ii)(b)), we can argue as
in (a) to conclude that

vr(x) < oo.

o0
Z (" S"x) <

1—1t
n=0

Hence, the series Y o 1" S"x is absolutely convergent in ces(p+) for each x € ces(p+).
Then argue as in (a) to deduce that the series R, := Y o, "S" is absolutely convergent in
Ls(ces(p+)), with R, € L(ces(p+)), and that the identities C; = Dy R; = 220:0 t"DyS"
are valid in L(ces(p+)).

(c) Let X = d(p+) forsome 1 < p < 00. Fixk € Nand x € d(p+) C dp,. It follows
from (4.9) that

wi (8" x) = 18" xla,, < 15" ldy, —dy, 1X1la,, = (m+ D Pwy(x), m e No,
and hence, since 0 < ¢ < 1, that
o0 o0
> w (" 8"x) < (Zt”(n + 1)1/1’k) wy (x) < 00.
n=0 n=0

Now argue as in (a) to conclude that the series R; := Y -, 1" S" is absolutely convergent in
Ls(d(p+)), with R, € L(d(p+)), and that the identities C; = Dy R, = ZZO:O t"D,S" are
valid in L(d(p+)). O

We come to the main result of this section, which should be compared with Proposition
3.2 and Theorem 3.7.

Theorem 4.5 Lett € [0, 1) and X be any Fréchet space in {€(p+), ces(p+),d(p+) : 1 <
p < oo}

(1) The generalized Cesaro operator C; € L(X) is compact.
(ii) The spectra of C; are given by

op(Cri X) = A (4.10)
and

o*(Cy; X) = o(Cy; X) = A U {0} @.11)
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(iii) For each A € o (Cy; X) the subspace (A1 — C;)(X) is closed in X with codim (A1 —
C)(X) = 1. Moreover, the 1-dimensional eigenspace Ker(m%HI —-C) = span(x[m]),
for each m € Ny, with x"™ e d| C X given by (3.8).

Proof (i) Since D, € L(X) is compact (cf. Proposition 4.3) and R; € L(X) (cf. Proposition
4.4(iii)), the compactness of C; follows from the factorization C; = Dy, R, (cf. Proposition
4.4(iii)) and Lemma 2.3.

(i1) Since X C w, we can conclude from Theorem 3.7 that

0pr(Cr; X) C 0pe(Cr; 0) = A 4.12)

Fix 1 < p < oco. Thend; C ARl N L(p+). Since £P C ces(p) < ces(p+) (cf.
(1) on p. 2 of [24]), it follows that also di C ces(p+). Moreover, di € d, C d(p+).
So, d; € X. Given v € A there exists m € Ny such that v = ¢,,. According to Lemma
3.4 the 1-dimensional eigenspace corresponding to v € 0, (C;; ) is spanned by xM) with
x" e dy. Since di C X, it follows that v € 0,,(Cs; X). So, it has been established that
A C 0 (Cy; X). Combined with (4.12) we can conclude that (4.10) is valid.

The spectrum of a compact operator in a IcHs is necessarily a compact subset of C (see
[27, Theorem 9.10.2], [33, Theorem 4 & Proposition 6]) and it is either a finite set or a
countable sequence of non-zero eigenvalues with limit point 0. It follows from part (i) and
(4.10) that

o(Cy; X) = A U {0} (4.13)

The discussion in the first three paragraphs of this section, with the notation from there,
shows that X = NP2, Xy is a Fréchet space of the type given in Lemma 2.5. Setting there
T :=C; € L(X)and T, := C; € L(X,) for n € N (see Propositions 2.12, 2.14 and 2.15), it
is clear that condition (A) is satisfied. Moreover, o (7,,; X,) = A U {0} for every n € N (cf.
(2.3), (2.5) and (2.7) with p, in place of p) and so, via (4.13), we have that

U 0(Ty; Xn) = AU{0} =0 (T; X) =0 (Cy; X).

In particular, U2 ,0(T; X)) € o(T; X) and so we can conclude from Lemma 2.5 that
(4.11) is valid.

(iii) First observe that (I — C;) = v(I —v~'C)), for v € C\{0}, with v='C, being a
compact operator by part (i). So, by [27, Theorem 9.10.1(i)], the subspace (vI — C;)(X) is
closed in X with codim (v — C;)(X) = dim Ker(vI — C;) for every v € 0,,(C;; X). But,
dimKer(vI — C;) = L forv € 0,,(Cy; X), as observed in the proof of part (ii), where it was
also established that Ker(ﬁl — C;) = span(x™), for each m € Ny. O

Remark 4.6 (i) The identity (4.10), established in the proof of part (ii) of Theorem 4.5, can
also be deduced from Lemma 2.5(ii).

(i) Lett € [0, 1) and X be any Fréchetspacein {£(p+), ces(p+),d(p+) : 1 < p < oo}.
Since X € w and C; € L(w) is injective (cf. Lemma 3.6), also C; € L£(X) is injective.
Moreover, as C; € L£(X) is compact (cf. Theorem 4.5(i)) it cannot be surjective, otherwise
it would be an isomorphism thereby implying that 0 € p(C;; X), which is not the case (see
(4.11)). Recall that £ is a basis for X and, by Lemma 3.1(iii), that the range C,(X) is a proper,
dense subspace of X. Hence, 0 belongs to the continuous spectrum of C;. This is in contrast
to the situation of w, where 0 € p(Cy; w); see Theorem 3.7.

(iii) Concerning the case when ¢ = 1, it is known that 0,,,(Cy; £(p+)) = ¥ and
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7
2

< %] U {0} and o*(Cy; £(p+))=a (C1; L(p1)),

(4.14)

o (Cy; L(p+))= {z eC:

forevery 1 < p < oo, [8, Theorem 2.2]. For p = 1, again 6, (Cy; £(1+)) = ¥ whereas

o(C1; £(14+)) ={z e C : Rez > 0}U{0} and o*(Cy; £(1+4)) = o (Cy; £(14)),
4.15)

[8, Theorem 2.4]. For the Fréchet space ces(p+), both (4.14) and (4.15) are also valid
(with ces(p+), resp. with ces(1+), in place of £(p+), resp. in place of £(1+)), as well as
0pi(Cr; ces(p+)) =P forall 1 < p < oo, [14, Theorem 3]. For the Fréchet space d(p+),
both (4.14) and (4.15) are again valid with d(p+) (resp. with d(1+)), in place of £(p+)
(resp. of £(1+)), as well as 0, (Cy; d(p+)) =@ forall 1 < p < oo, [21, Theorem 3.2].

5 C; acting in the (LB)-spaces £(p—), d(p—) and ces(p—)

Given 1 < p < oo, consider any strictly increasing sequence {prlren < (1, p) which
satisfies px 1 p. The Banach spaces Xy := £Pk satisfy X; C Xyy1 with a continuous
inclusion, for each X € N, and X = U,?olek is an (LB)-space, necessarily regular by
Lemma 2.6. The (LB)-space X is denoted by £(p—) = ind x £P%. If we set X := ces(pr),
then again Xy C X4 for k € N (see the discussion prior to Proposition 3.3 in [13])
with a continuous inclusion. The (LB)-space X := UZ> | Xy, necessarily regular by Lemma
2.6, is denoted by ces(p—) := ind xces(py). Finally, the Banach spaces Xy := d), satisfy
X C Xg41 with a continuous inclusion, for £ € N (see Propositions 2.7(ii) and 5.1(iii)
in [19]). The (LB)-space X := U2, Xy, necessarily regular by Lemma 2.6, is denoted by
d(p—) := ind rd,, . The discussion after (3.7) shows that d; is continuously included in each
space in {7, ces(p),d, : 1 < p < oo}, from which it follows that d; € X continuously,
for each X € {€(p—),ces(p—),d(p—) : 1 < p < oo}. Indeed, by the definition of the
inductive limit topology, £ € £(p—) and d, € d(p—) and ces(p) C ces(p—) with all
inclusions continuous. In all of these (LB)-spaces the canonical vectors £ form a Schauder
basis. Indeed, concerning £(p—) recall that £ is a basis for each Banach space ¢7* and the
natural inclusion £Px C £(p—) is continuous for each k € N. It follows that £ is a Schauder
basis for £(p—). For the (LB)-spaces ces(p—), resp. d(p—), see [12, Proposition 2.1], resp.
[20, Theorem 4.6]. It follows from [44, Proposition 24.7] together with Lemma 3.1(iv) that
X C w continuously. For further properties of the (LB)-spaces £(p—), ces(p—) and d(p—),
and operators acting in them, we refer to [12, 20, 21], for example, and the references therein.

For each of the three cases above it is clear that the diagonal (multiplication) operator
D, € L(w) as defined in (4.4) satisfies D, (Xy) S X for all k € N (cf. proof of Proposition
4.3) and so Dy (X) € X. By Lemma 2.11 it follows that D, € £(X). Actually, D, € L(X)
is a compact operator. For the case X = ¢(p—), since ¢ € 02 C t(co—), Proposition 4.5
of [12] implies that D, € L(£{(p—)) is compact. Suppose now that X := ces(p—). By
Proposition 4.2 of [12] it follows that D, € L(ces(p—)) is compact provided that § € ¢’
for some t > ¢ (with ]17 + % = 1). But, it is clear from (3.3) that ¢ = ¢ € Ny~ 1£* and so

D, is a compact operator in ces(p—). Consider now when X := d(p—). Since ¢ € £2 and
@ = ¢, it follows that ¢ € dy C d(co—) and so Proposition 4.13(ii) of [21] implies that D,,
is a compact operator in d(p—). So, we have established the following result.
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Proposition 5.1 Let X be any (LB)-space in {£(p—), ces(p—),d(p—) : 1 < p < oo}. Then
Dy maps X into itself and D, € L(X) is a compact operator.

The following result will also be required.

Proposition 5.2 Lert € [0, 1) and X be any (LB)-space in {£(p—), ces(p—),d(p—) : 1 <
p <00}

(i) The right-shift operator S given by (4.5) maps X into X and belongs to L(X).
(ii) The generalized Cesaro operator C; maps X into X and satisfies C; € L(X).
(iii) The operator R; given by (4.7) maps X into X and belongs to L(X), with the series
Yoo 1" S™ being convergent in Ly(X). Moreover,

= DyR, = z:tDS” 5.1

Proof (i) It was observed in the proof of Proposition 4.4(ii) that § € L(w) as well as S(£Pk) C
£Pk and S(ces(px)) < ces(px) and S(d,) € dp,, for each k € N, from which it is clear that
S(X) € X.By Lemma 2.11 it follows that S € £(X).

(i1) In each of the three cases ¢(p—), ces(p—), d(p—) for X itis clear that C;:  — w
(cf. (1.1)) satisfies C;(Xx) € Xy forall k € N (see the proof of Proposition 4.4(i)) and hence,
C/(X) € X. Since C; € L(w), via Proposition 3.2, again by Lemma 2.11 we can conclude
that C; € L(X).

(iii) According to part (i) the sequence {Zﬁzo 1" S keny € L(X).

Claim. {Zln‘:o t"S" : k € No} is an equicontinuous subset of L(X).
Suppose first that X = £(p—) or X = ces(p—). Since X is barrelled, to establish the Claim
it suffices to show, for each x € X, that

k
Buy:{Ejﬂwx:keN4
n=0

is a bounded subset of X = ind , X,. Since X is a regular (LB)-space, the set B(x) will be
bounded if there exists m € Nsuch that B(x) € X,, and B(x) is bounded in the Banach space
Xm.But, x € X = U2 X, and so there exists m € N such that x € X,,,. Since §" € L(X,,)
for all n € Ny, it is clear that B(x) C X,,. Moreover, in the proof of Proposition 4.4(ii) it
was noted that || S| x, —x, < 1andhence, ||S"|x,—x, < 1foralln € Ny. Accordingly,

k 00 00
Il x
ngn n n n n m
1Y " S"xllx, < > "1 xlx, < Zor 18" N ¥, < G50 k€ Mo,
- - =

which implies that B(x) is a bounded set in X,,,. In the event that X = d(p—), an analogous
argument applies except that now X, = dp,, andso [|S" |4, —a,, = (1+ /Pn forn e No;
see (4.9). In this case the previous inequality becomes

k 0
1Y 1" xlla,, < (Zr”(n+ 1)1“’"1) xlla,, k€ No,
n=0

n=0

which implies that B(x) is a bounded set in d),, as Zflo:() "(n+ DHYPm < co. The proof of
the Claim is thereby complete.
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In view of the Claim, to show that the series Z;’;O t"S™ converges in L;(X) it suffices to
show that the limit

k 00
Rix:=1i "S"x = t"s" 5.2
I 2 = 2 o

exists in X for all x € X in some dense subset of X. Since £ is a Schauder basis for X, its
linear span span € is a dense subspace of X and so it suffices to show that the limit in (5.2)
exists foreachx € £. Letx :=¢, = (0,...,0,1,0,...), for any fixed r € Ny, where 1 is in
position r. Then S"e, = e, for all n € Ny. Fix k € Np. It follows that

k k
Yo" =Y teryn=(0,....1,0,1%,...,15,0,0,..), (5.3)
n=0 n=0
where 1 is in position r and * is in position r + k. Observe that [le;|¢s1 = 1 for j € No.

Direct calculation via (2.6) shows that |l¢; IIdP1 = (j 4+ D'P for j € Ny, and by Lemma

4.7 in [17], there exists K > 0 such that [[ej[lces(p;) < K for all j € Ny. It follows
. r 1 i Kt K

that Ziozr t/ ||€j||g111 = (ltj < m, that Ziozr t/ ||ej||ces(pl) < ﬁ < ﬁ and that

Z?’;r t'llejlla, < ;O:r t/(j + DHYPr < 0o. Accordingly, the series

o0
Wh=>"tle; =(0,...,0, 11,1, ..), (5.4)
j=r

with 1 in position r, is absolutely convergent in the Banach space X; belonging to
{£P1, ces(p1),dp,} and defines an element of X, that is, yl'l e X|. Since the inclusion
X C X is continuous, the series (5.4) is also convergent to y1 in X. For any k > r we have

k oo
IYT=>"e"S"e, lx, =1 Y. tlejllx, > 0, k— oo,
n=0 Jj=r+k+1

being the tail of the absolutely convergent series (5.2). So, the sequence in (5.3) converges to
yI"lin X for k — oo and hence, also to y'l in X. Since r € Ny is arbitrary, we have proved
that the limitin (5.2) exists in X foreach x € span £ and hence, by the Claim, it exists for every
x € X. Accordingly, the limit operator R; = limg_, Zﬁ:o 1" S" exists in L;(X). Since
Dy, R, C; € L(X) and X C w continuously, the equality C; = Dy R, = ZZOZO "Dy, S"
follows from Proposition 4.2. O

The main result of this section is as follows.

Theorem 5.3 Lett € [0, 1) and X be any (LB)-space in {£(p—), ces(p—),d(p—) : 1 <
p =00}

(1) The generalized Cesaro operator C; € L(X) is compact.
(ii) The spectra of C; are given by

op(Cr; X) = A (5.5)
and

o*(Cr; X) = 0(Cy; X) = A U {0} (5.6)
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(iii) For each A € o (Cy; X) the subspace (A1 — C;)(X) is closed in X with codim (A1 —
C)(X) = 1. Moreover, the 1-dimensional eigenspace Ker(m%HI —-C) = span(x[m]),
for each m € Ny, with x"™ e d| C X given by (3.8).

Proof (i) Since D, € L£(X) is compact (cf. Proposition 5.1) and R; € £(X) (cf. Proposition
5.2(iii)), the compactness of C; € L(X) follows from the factorization in (5.1) and Lemma
2.3.

(ii) The (LB)-space X = ind ;X is an inductive limit of the type in Lemma 2.10.
Moreover, T := C; € L(X) has the property, for each k € N, that the restriction
Ty of T to the Banach space X; maps Xj into itself and satisfies 7y € L(Xi). That
is, T satisfies condition (A/) of Lemma 2.10. Then, by Lemma 2.10(i) it follows that
opi(Cr; X) = UL 10 p (Ti; Xi) = A (cf. Propositions 2.12,2.14 and 2.15). Since C; € L(X)
is compact by part (i), the analogous argument used to prove (4.13), now with (4.10) replaced
by (5.5), can be used to show that

o(Cy; X) = A U {0} (5.7)

Moreover, o (Ty; Xx) = o(Cy; Xi) = A U {0} for every k € N and so, for m = 1 say, we
note (via (5.7)) that

Uge,,0 (Ti; Xi) = AU{0} C o (T; X).

We can conclude again from Lemma 2.10(ii) that *(C;; X) = o (C; X). Combined with
(5.7) this yields (5.6).

(iii) The analogous argument used to prove part (iii) of Theorem 4.5 also applies to
establish the given statement. Again, since d; € X (see the introduction to Sect. 5), it follows
that Ker(ﬁ] — C;) = span(x™), for each m € Ny. O
Remark 5.4 (i) An examination of the arguments given in Remark 4.6 shows that, when
suitably adapted, they also apply here to conclude that C,(X) is a proper, dense subspace of
X. That is, 0 belongs to the continuous spectrum of C;.

(ii) Concerning t = 1, it is known that o, (C1; ces(p—)) = @, [12, Proposition 3.1] with

!/ / / /
{O}U{ze(C: z—% <%}§0(C1;ces(p—))§{zec: z—% 5%}
(5.8)
and
0*(C1;ceS(p—))={z€C: z—% 5%}20(C1;cesw—)), l<p=<oo, (59

[12, Propositions 3.2 and 3.3].
For the (LB)-space d(p—), both (5.8) and (5.9) are also valid (with d(p—) in place of
ces(p—)) as well as 0, (Cy; d(p—)) =@, forall 1 < p < oo; see Theorem 3.6 in [21].

The spectrum of C; acting in £(p—) is covered by the next result.
Recall that the space £(p’+) is the strong dual of £(p—), [20, Proposition 3.4(i)], and that
the dual operator C| € L(£(p'+)) of C1 € L(£(p—)) is given by

00
X
ix = (Z ; +l 1) , X = (xn)neNo € E(p/"_)’
neNy

i=n

see, for instance, [40, p. 123].
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Proposition 5.5 Let p € (1, 00] and let p’ € [1, 00) satisfy Ly ﬁ =1

(i) 0pi(Cr:l(p—)) =Pand{ze€C : |z — 5 | < *} C op(Chi E(p' ).
(i) {JU{zeC: |z-5| < %}EU(Cl,K(p—))E{ZGC Dlz-Zl< 2y
(iii) o*(C1;L(p—) ={z€C: |z— 5| < 5} =0a(C1; L(p-)).

Proof (i) The first part of (i) follows from Lemma 2.10(i), the definition £(p—) = UZ2  £P*
with I < p; 1 p, and the fact that 0,,;(Cy; £9) = ) for every 1 < g < 00; see Proposition
2.13(ii).

To establish the second part, fix z € C with |z — %| < E S1nce 1 < pr 1 p,it
follows that pk N p and hence, the open disk B( > 2) - B( > 2 ) for every k € N.

Accordingly, |z — 7| < % for all k € N. So, by [40, Theorem 1(b)], for each k > 1
there exists x; € E”l,c\{O} such that Cixk = zx; with xx = (xx,i)ien, satisfying x ;41 =
Xk.0 ]_[2:0(1 — m) for all i € Ny (see (1) on p. 125 of [40]) for some x; o € C\{0}.
Setting x40 := 1 for each k € N, it follows that x; = x; =: x for all k € N and hence,
x € NgentPt = (L(p—)) = £(p'+). On the other hand, it is clear that Cix = zx. This
shows the second part of (i).

(i) To establish the second containment in (ii) we note that an analogous proof as that given
for Proposition 3.2 in [12] also applies here. The use of Theorem 3.1 and Lemma 3.1(ii) there
needs to be replaced, respectively, with the fact that 6 (C1; £9) = {z € C : |z — %/I < %/}
for 1 < g < oo (cf. Proposition 2.13(ii)) and Lemma 2.10(iii).

Concerning the first containment in (ii), observe that C is not surjective on £(p—). Indeed,

%)%NO belongs to £7! with £7! C ¢(p—) and so y € £(p—). On

the other hand, x := C| y = ((=1)")nen, belongs to w but, x ¢ £P for every k € N
implies that x ¢ £(p—) = UZ2 £P%. Since x is the unique element in w satisfying y = Cyx
(as C; € L(w) is a bicontinuous isomorphism), it follows that y is not in the range of
C1 € L(L(p—)) forevery 1 < p < oo. In particular, 0 € o (Cy; £(p—)).

Fix L € C\{0}. If & € p(Cy; £(p—)), then (A\I — C1)({(p—)) = £(p—). Since £(p—) is
dense in €7, it follows (with the bar denoting the closure in ¢7) that

the element y := (

e =0r = (I — CHE(p—)) S (M — C)(EP) S ¢P.

By Proposition 2.13 we can conclude that |A — %I > %/ Accordingly, | — | < 1mp11es
that A € o(Cy; £(p—)).

(iii) An analogous argument used for the proof of Propostion 3.3 in [12] also applies here.
One only needs to replace the use of Proposition 3.2 and Theorem 3.1 there by part (ii) above
and Proposition 2.13, respectively. O

6 Dynamics of the generalized Cesaro operators C;

The aim of this section is to investigate the mean ergodicity and linear dynamics of the operator
Cy,fort € [0, 1], in w, in the Fréchet spaces {¢(p+), ces(p+),d(p+) : 1 < p < oo} andin
the (LB)-spaces {¢(p—), ces(p—),d(p—) : 1 < p < oo}. For the Banach spaces 2!, dy and
LP, ces(p),dy, for 1 < p < oo, these results are also new. We also study the compactness,
spectra and linear dynamics of the dual operators C;.

An operator T € L£(X), with X a IcHs, is called power bounded if {T" : n € N} is an
equicontinuous subset of £(X). Here 7" := T o ... o T is the composition of T with itself
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n times. For a Banach space X, this means precisely that sup, . |7" || x—x < oo. Given
T € L(X), its sequence of averages

1 n
Tiny =~ > 1", neN, (6.1)
m=1

is called the Cesaro means of T. The operator T is said to be mean ergodic (resp., uniformly
mean ergodic) if (T},))nen is a convergent sequence in L;(X) (resp., in £, (X)). It follows
from (6.1) that

n n—1

P Tty — Tin-1s

for n > 2. Hence, necessarily TTn — 0in L3(X) (resp., in Lp(X)) as n — oo, whenever T'
is mean ergodic (resp., uniformly mean ergodic). A relevant text is [39].

Concerning the dynamics of a continuous linear operator 7 defined on a separable IcHs
X, recall that T is said to be hypercyclic if there exists x € X whose orbit {T"x : n € Ny}
is dense in X. If, for some x € X, the projective orbit {AT"x : A € C, n € Np} is dense
in X, then T is called supercyclic. Clearly, any hypercyclic operator is also supercyclic. As
general references, we refer to [16, 32].

We begin with a study of the dynamics of generalized Cesaro operators acting in @. For
this, we will require, for each fixed n € Ny, the combinatorial identity

" =ik n—+1 _(n .
k:Xn:—i( 1 <k+1>_<i), i=0,...,n. (6.2)

For the proof we proceed by induction oni =0, ..., n. Fori = 0 observe that

n_n_kn-l-l__on—i-l__n
Y ()= (D) =1= (o)

Assume that (6.2) is valid for some 0 < i < n. Fori + 1 it follows that

n

a—imD—k (TN o "+1> -l - _ (n—i)—k<n+1>
£ (1) (s S (!

k=n—(@i+1) k=n—i

<n + 1) 3 <n> B n+ 1! 3 n!
n—i i) =D+ D! il =)

n! [n—i—l 1j|_ n! ([ n
Mn—id i+l | G+Dn—i— 1! _<i+1)'

Since this is identity (6.2) for i + 1, the proof is complete.

Theorem 6.1 Let ¢ € [0, 1) and x'° := ap(t"),eny, with ag € C\{0}; see (3.8).

(1) The generalized Cesaro operator C; € L(w) is power bounded and uniformly mean
ergodic.
(ii) Ker(I — C,) = span {x%} and the range

I —-CHw)={xew: xg=0} =span{e, : r € N} (6.3)

of (I — Cy) is closed in w.
(iii) The operator C, is not supercyclic in w.
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Proof (i) That C; is power bounded follows from the barrelledness of w and r, (C;x) < ry, (x),
for x € w and n € Ny (cf. (3.4)), which implies, for every x € w, that

ra(Ci'x) < rp(x), m,n € No.

Since w is Montel, C; is uniformly mean ergodic, [3, Proposition 2.8].
(ii) By part (i) and [5, Theorem 3.5] we can conclude that (I — C;)(w) is closed in w and
that

w=Ker(l —C)® (I — Cy)(w). (6.4)

Moreover, Lemma 3.4(i) yields that Ker(/ — C;) = span{x[O]}. Since (C;x)¢ = xg for each
x € w (cf. (1.1)), we have (I — C;)(w) C {x € w : xop = 0} = span{e, : r € N}. In order
to establish (6.3), it remains to show that e, € (I — C;)(w) for each r > 1. Observe, via
Lemma 3.1(iii), that

1 n
ey =
n+1 n—+1

(I —C)(ey —tepy1) = (ey — tepy) — ey —teyr1, neNg.  (6.5)
Arguing by induction and using (6.5) we can conclude that e, € (I — C;)(w) foreachr > 1.
Indeed, if n = 0, then (6.5) yields (I — C;)(eg — te;) = —tej and hence, e; € (I — Cy)(w).
Suppose that e, € (I — C;)(w). Then (6.5) implies that n"?en —tepr1 = (I — Cy)(ey —
teny1) € (I — Cy)(w). Since e, € (I — C;)(w), by the induction hypothesis, it follows that
en+1 € (I — Cy)(w). This completes the proof of (6.3).

(iii) To verify that C; € L(w) is not supercyclic we proceed as follows. It follows from
(6.4), by a duality argument, that (w);s =Ker(I-C)d — C{)((w)},) and that dim Ker(/ —
C)) = codim (I — C;)(w) = 1, where C| € E((a));g) is the dual operator of C;. Accordingly,
1 e ap,(C’ ; (a));s). On the other hand, a direct calculation shows that the dual operator
C/ e £((u));3) is given by the transpose matrix of (3.2), that is,

o k—i

t

Cjz= ( > P lzk) . 2= (@ken, € (@)p. (6.6)
k=i ieNp

Recall that (a))’ﬁ consists of vectors z = (Zp)nen, € CNo with only finitely many non-zero
coordinates. Define

2= ;(—l)ic)zien_i € @)j\{0}, neN.

It is shown below that
1

c7" = H—Hz["], n e Ny. 6.7)

This reveals that A = {nlﬁ :n € No} € 0,0(C}s (w):g). Since 0 (Cr; w) = 0p(Cr; w) =
A (cf. Theorem 3.7), it follows via (2.1) in Corollary 2.2 that also o, (C;; ("));3) -
o(C/; (a));g) = A. So,

opt (Cr; (@)p) = 0 (Cr; () = A.

In particular, C; has a plenty of eigenvalues which implies that C; cannot be supercyclic, [16,
Proposition 1.26].
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It remains to establish (6.7). Note, for n € Ny fixed, that (z"); = 0if i > n and

"y, = (—1)i('l.l)ti fori =0, ...,n. In particular, z[" € (a)):s\{O}. Fori > n itis clear
that
Ly N T ! L m
C;z"h; = "Ny =0= 0= ;.
(€2, ;Hl(z It o @
To verify that (Ct’z["])n,i = nl?(z["]),,,i fori =0, ..., n observe that
0 k—(n—i) n k—(n—i)
t t
Ay (nly, _ [n]
(Crz2"n—i Z k—l—l(z Dk Z k+l(z )k
k=n—i k=n—i
n k—(n—i) n k—(n—i)
t t n
— [n] = -1 n—k tn—k
Z’ @D Z' b (n_k)
k=n—i k=n—i
_ Z 1 (k" n+1
B k41 (n—k'k! n+1
k=n—i
(=1 « k(1Y (=D i (n
— —1 (n—i)—k — £ ,
n+1 k;_i( ) k+1 n+1 \i

where the last equality follows from (6.2). But, as noted above, (=1 (7)#' = (z["),_; and
SO (C,’z[”J)n_i = ﬁ(zl’”)n_i fori =0, ..., n. Theidentity (6.7) is thereby established and
the proof is complete. O

We now turn to the dynamics of generalized Cesaro operators C; acting in the other
sequence spaces considered in this paper, for which we first need to establish some general
results on bounded linear operators acting in IcHs’. Recall that a linear operator 7: X — Y,
with X, Y IcHs’, is said to be bounded if there exists a neighbourhood ¢/ of 0 € X such that
T (U) is a bounded subset of Y. It is routine to verify that necessarily 7 € £(X, Y). AlcHs X
is called locally complete if, for each closed, absolutely convex subset B € 5(X), the space
Xp := span (B) equipped with the Minkowski functional || - || g, [44, p. 47], is a Banach
space, whose closed unit ball is B. Such a set B is also called a Banach disc, [36, Sect. 8.3].

Theorem 6.2 Let X be a locally complete IcHs and T € L(X) be a bounded operator
satisfying o (T; X) € B(0, §) for some § € (0,1). Then T" — 0 in Lp(X) asn — oo. In
particular, T is both power bounded and uniformly mean ergodic.

Proof Since T is a bounded operator, there exists a closed, absolutely convex neighbourhood
U of 0 € X such that T (U4) € B(X). So, we can select a closed, absolutely convex subset
B € B(X) such that T (/) € B. By the assumptions, (Xp, || - || p) is a Banach space. Since
TU) € B,the map S: X — Xp defined by Sx := Tx for x € X, is well defined and it
is clearly continuous. Let j: Xp — X denote the canonical inclusion of Xp into X, i.e.,
j(x) ;= x forx € Xp. Then j € L(Xp,X)and T = jS§ € L(X). On the other hand
Sj € L(XB). So, by [33, Proposition 5, p. 199] we have that

o (jS: X\{0} = o (Sj; Xp)\{0}.

Accordingly, o(Sj; Xp) = o(T; X) € B(0, §). This implies that the spectral radius r(Sj)
of Sj satisfies r(Sj) < & < 1. Since r(S)) = lim, 0o (I(S)" x5—x,) """ it follows via
standard arguments that (Sj)" — 0in £,(Xp) as n — oo. The claim is that this implies
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T" — 0in L;(X) as n — oo. To establish the claim, fix any C € B(X) and any absolutely
convex neighbourhood V of 0 € X. Then there exist A > 0 such that C € AU and px > 0
such that B € V. Since B is the unit closed ball of X and (Sj)" — 0 in £,(Xp), there
exists ng € N such that (Sj)"(B) € ﬁB for all n > ng. So, for each n > ny, it follows that

T"(C) CAT"U) = AT" ' TU) S AT (B) = AT" ' (j(B)) = A(j$)" "' (j(B))

1 1
= 1j(S)H"2SG(B)) = AjI(S)" " (B)] € Aj ((H) B) = (;) Jj(B)

=<i)Bgv.

This means, with W(C,V) := {R € L(X) : R(C) C V}, that T" € W(C,V) for each
n > ng. Since C € B(X) and V are arbitrary and the sets W (C, V) form a basis of neigh-
bourhoods for 0 in £, (X), the claim is proved, i.e., T" — 0in £;(X) as n — oo. It follows
that T is power bounded (clearly) and that 7j,; — 0in £,(X) as n — oo (i.e., T is uni-
formly mean ergodic). Indeed, let ¢ be any 7,-continuous seminorm. Then (6.1) implies that
q(Tin)) < % > _1q(T™) forn € N. Since ¢g(T") — 0in [0, o), also its arithmetic means
% an:l q(T™) — 0 forn — oo, that is, lim,_, o q¢(T}4)) = 0. So, we can conclude that
Tin) — 0in £,(X) forn — oo. O

Theorem 6.2 permits us to formulate and prove the following general criterion for power
boundedness and uniform mean ergodicity. To state it, recall that a IcHs X is said to be
ultrabornological if it is an inductive limit of Banach spaces, [36, Sect. 13.1], [44, p. 283].
For instance, Fréchet spaces, [36, Corollary 13.1.4], and (LB)-spaces are ultrabornological.
A IcHs X is called a webbed space if a web can be defined on X. For the definition of a
web and the properties of webbed spaces we refer to [36, Sect. 5.2] and [38, Ch. 2.4]. Recall
from Sect. 2 that Fréchet spaces and (LB)-spaces are webbed spaces. Moreover, sequentially
closed subspaces and quotients of webbed spaces are webbed spaces, [36, Theorem 5.3.1].

For what follows we require the next result concerning algebraic sums in ultrabornological
IcHs” which can be found in [38, Sect. 35.5(4), p. 66].

Proposition 6.3 Let X be an ultrabornological IcHs such that X = X| @ X, algebraically
with both X1, Xo € X webbed spaces for the topology induced by X. Then X1 and X,
are closed subspaces of X and X = X1 @ X» topologically, i.e., the canonical projections
P;: X — X; are continuous fori =1, 2.

In general compact operators need not be mean ergodic. Just consider 7 = o/ with
|| > 1 1in a finite dimensional space.

Theorem 6.4 Let X be a locally complete, webbed and ultrabornological IcHs. Let T €
L(X) be a compact operator such that 1 € o (T; X) with o (T; X)\{1} € B(0, §) for some
8 € (0, 1) and satisfying Ker(I — T) N (I — T)(X) = {0}. Then T is both power bounded
and uniformly mean ergodic.

Proof Since T € L(X) is a compact operator, the following properties hold true: (a) (I —
T)(X) isclosed in X, (b) dimKer(/ —T') < oo (1 is necessarily an eigenvalue of T as it is an
isolated point of o (7'; X) and T is compact), and (c) codim (I —T)(X) = dimKer(/ —7T) <
0, see, e.g., [27, Theorem 9.10.1]. Since Ker(/ — T) N (I — T)(X) = {0} by assumption,
it follows that X = Ker(/ — T) & (I — T)(X) algebraically. Moreover, (I — T)(X) and
Ker(I — T) are closed complemented subspaces of X and hence, are webbed spaces, [36,
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Theorem 5.3.1]. So, we can apply Proposition 6.3 to conclude that X = Ker(/ — T) & (I —
T)(X) holds topologically.

SetY := (I —T)(X)and S := T|y. Itis routine to verify that S(Y) S Yand S: Y - Y
is a compact operator. So, o (S; Y)\{0} = 0,;(S;Y) € 0, (T; X) € o(T; X). But, 1 ¢
o (S;Y). Otherwise, there exists y € Y'\{0} such that Sy = y, i.e., Ty = y or, equivalently,
(I —T)y=0.Thus,y e YNKer({ — T) = (I — T)(X) NKer(I — T) = {0} and hence,
y = 0; a contradiction. Hence, o (S;Y) C o(T; X)\{1} € B(0, ) with § € (0, 1). Since S
is compact, it is also bounded and hence, we can apply Theorem 6.2 to conclude that S” — 0
in L, (Y) as n — o0, after noting that the closed subspace Y of X is locally complete.

Denote by P: X — X the continuous projection onto Ker(/ —7") along (I —T)(X) =Y,
i.e., for each z € X there exist unique elements x € Ker(/ — 7) and y € Y such that
7z =x+ yand so Pz := x. The claim is that 7" — P in £;(X) as n — o0. To establish
this fix B € B(X) and a neighbourhood ¢/ of 0 € X. As (I — P) € L(X), we have that
(I — P)(B) € B(Y). Taking into account that S — 0 in £,(Y) as n — 00, there exists
no € N such that S"((I — P)(B)) C U NY for every n > ng. On the other hand, for each
z € X we have that Pz € Ker(I — T), i.e., TPz = Pz, and hence, T"(Pz) = Pz for each
n € N. Accordingly,as S =T on (I — P)(X) = (I — T)(X) = Y we get, foreachz € B
and n > ng, that

T"z — Pz=T"(Pz+ (z— P2)—Pz=T"(z— Pz) =T"((I — P)z)
=S5"(I-P))eS((I—-P)B)CUNY,

where we used the fact that (I — P)z € Y. Since z € B is arbitrary, this implies that
T" — P € W(B,U) :={R € L(X) : R(B) C U} for each n > ng. So, by the arbitrariness
of B and U, the claim is proved. O

Remark 6.5 (i) Let X be a sequentially complete IcHs and T € £(X). If %ﬂ — 0in L3(X)
asn — oo, then o(T; X) € B(0, 1), [2, Proposition 5.1 & Remark 5.3]; see also [28,
Proposition 4.4]. In particular, if 7" is power bounded, then o (7'; X) € B(0, 1). In view of
this fact, Theorem 6.4 can be seen as a sort of converse result (observe that every sequentially
complete IcHs is locally complete, [44, Corollary 23.14]).

(ii) Theorem 6.2 should also be compared with [6, Theorem 10] in which it is proved,
for T € L£(X) with X a prequojection Fréchet space, that 7" — 0 in £,(X) as n — 00
if, and only if, o (T; X) € B(0, 1) and TT" — 0in Lp(X). Since o (Cy; w) {(Z B0, 1) (as
1 €eo(Cs; w)butl ¢ B(0, 1)) and w is a prequojection Fréchet space, for each ¢ € [0, 1), it
follows that (C;)" # 0 in Lp(w) for n — oo.

Combining Theorem 6.4 with the results in the preceding sections we get the following
result.

Theorem 6.6 Let t € [0,1). Let X belong to any one of the sets: {d,, 7 : 1 < p <
oo} U{ces(p) : 1 < p < oo} or {€(p+),ces(p+),d(p+) : 1 < p < oo} or
{t(p—),ces(p—),d(p—) : 1 < p < oo}. Then C; € L(X) is power bounded and uni-
formly mean ergodic, but not supercyclic.

Proof From the results of the preceding sections recall that C; € £(X) is a compact operator
on X and o (Cy; X) = A U {0}. Hence, o (C;; X)\{1} € B(0, 1/2). Moreover, (I — C;)(X)
is also closed in X. Since x[Y € d; € X, we can adapt the arguments in the proof of
Theorem 6.1 to argue that (I — C;)(X) = {x € X : xo = 0} = span{e, : r € N} and
Ker(I — C;) = span {x[OJ}. Hence, Ker(I — C;)N (I — C;)(X) = {0}. So, all the assumptions
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of Theorem 6.4 (for § = % and T := C;) are satisfied. Then we can conclude that C; is power
bounded and uniformly mean ergodic.

To show that C;: X — X is not supercyclic we proceed as follows. Since C; € L(X)
is compact, the operators C;: X — X and C;: X /’3 - X /’3 have the same non-zero eigen-
values, [27, Theorem 9.10.2(2)]. Hence, o ; (C;; Xl’g) = 0p:(C;; X) = A. According to [16,
Proposition 1.26] it follows that the operator C;: X — X cannot be supercyclic. O

A first consequence of the results collected above is the following one concerning the dual
operators C;. First we recall the relevant dual spaces involved. Namely, for p, p’ satisfying
% + % = 1 we have (see Proposition 3.4(i), Proposition 4.3 and Remark 4.4 in [20],
respectively):

€(p—) = (L(p'+))g and (L(p—)) = £(p'+), for I < p < o0;

d(p—) ~ (ces(p’—l—));3 and (ces(p—));3 ~d(p'+),forl < p < o0;

ces(p—) ~ (d(p’—i—))}, and ces(p'+) ~ (d(p—));g, forl < p < o0.

Proposition 6.7 Let t € [0,1) and X belong to any one of the sets: {d,, P : 1 <
p < oolU{ces(p) : 1 < p < oo} or {£(p+),ces(p+),d(p+) : 1 < p < oo} or
{t(p—),ces(p—),d(p—): 1 < p < oo}

(i) The dual operator C; € £(X/’3) of C; € L(X) is compact and is given by

X k—i

t

Ciy= (E T 1)’k> . ¥ = (keNy € Xp- (6.8)
k=i ieNp

(ii) The point spectrum of C| € E(X}j) is given by
opt(Cl; Xp) = 0t (Cr; X) = A. (6.9)

Each eigenvalue #, forn € Ny, is simple and its corresponding eigenspace is spanned by

n An\ ,
Yl = Z(—l)’(i)t’en_i € X;\(0}, n € No.
i=0

Moreover,
o™ (Cl; Xp) = 0(Cj; Xp) = AU {0},

Proof (i) Recall that £ is an unconditional basis in £(p+), ces(p+), d(p+),for1 < p < oo
(cf. Section4) and an unconditional basis in £(p—), ces(p—), d(p—), for 1 < p < oo (cf.
Section 5). Moreover, £ is also an unconditional basis in the dual Banach spaces (£7) = o
for 1 < p < oo, in the dual Banach spaces (ces(p))’ =~ dy for1 < p < oo, [19], and
in the dual Banach spaces (d),)" >~ ces(p’) for 1 < p < oo (cf. [17, 24]), as well as in
(d1) =~ ces(0), [25, Sect. 6]. In view of the description of X //3 (for X non-normable) given
prior to this Proposition it follows, for all X # ¢!, that the linear space span(&) = (w)’ is
dense in X ;3 The continuity of C;: X }3 —- X /’3 then implies that (6.6) can be extended to an
inequality for every y € X ;3, that is, (6.8) is valid.

For X = ¢!, the linear space span(£) = ()’ is not dense in X;g = £®°. So, in this case we

tk—i

argue as follows. Define Ty := (Z,ﬁil myk)' N for y € £°°, in which case T € L(£°°).
ASIN}
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Indeed, for y € £°°, note that

k—i
ITylloc = sup Yk| < sup
00 lEokz:k+l lGNOZk+1 le()k
< lIylloo sup Zt" f= ||y||ooer = —nynoo (@s0 <t <1).
i€No —; j=0

Accordingly, ||T || goo— goo < that is, T € £(£°°). For each x € ¢! and y € £, a direct

-_— l t’
calculation yields

(Clx! )’> = <X, Ty>7

which implies that T = C;.

For any Fréchet space X € {¢(p+), ces(p+),d(p+) : 1 < p < oo} and any Banach
space X € (el diyu{er, ces(p),dp : 1 < p < oo} the operator C; € £(X) is compact
(cf. Propositions 2.12,2.14, 2.15 and Remark 3.3 and Theorem 4.5(i)). Accordingly, the dual
operator C; € L‘,(X//g) of C; € L(X) is compact, [27, Corollary 9.6.3].

For any (LB)-space X € {¢(p—),ces(p—),d(p—) : 1 < p < oo} the operator C; €
L(X) is also compact (cf. Theorem 5.3(i)). So, the compactness of C; € E(X;S) follows from
Proposition 2.7, after observing that X is a boundedly retractive (LB)-space. Indeed, X =
L(p—),for 1 < p < oo, is a boundedly retractive (LB)-space, as it is the strong dual of the
quasinormable Fréchet space ¢(p’+), [45, p. 12]. On the other hand, X € {ces(p—),d(p—) :
1 < p < oo} is a boundedly retractive (LB)-space, as it is a (DFS)-space, [20, Proposition
2.5(ii) & Lemma 4.2(i)].

(i1) It was shown in the proof of Theorem 6.1 that each vector 2" e (w) ﬁ\{O} c X 8
satisfies C/zl" = mz["], for every n € Ny. Accordingly.

A C (Tp,(Ct/; X};) (6.10)
Moreover, 0 ¢ o, (C;; X;;) as C; is injective. To verify this let z € X}, satisfy C;z = 0. By

considering the individual coordinates in (6.8) it follows that

i+ ] (C )i — t(C;Z)H-], i € Ny,

thatis, z = O and so indeed 0 ¢ o ,,(C}; ﬁ) The compactness of C; € £(X ) then implies
that

o (Cy; X;g) ={0}Uo,(C; X;S) and 0 ¢ 0,,(Cy; X};). (6.11)

It follows from (2.1) in Corollary 2.2 (with T := C;), from (6.11) and from the fact that
0 (Cr; X) = A, that (6.9) is valid.

Parts (1) and (2) of [27, Proposition 9.10.2] imply that each eigenvalue of C; is simple, as
this is the case for C;; see Propositions 2.12, 2.14, 2.15 and Remark 3.3 and Theorems 4.5,
5.3, which also include the identities

o*(Cs; X) =0 (Cs; X) = A U{0}. (6.12)
Setting T := C; it follows from (2.2) in Corollary 2.2, together with (6.12), that

o*(Cf; Xp) S o™(Cr; X) = AU{0).
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From general theory (cf. Section2) we also have that
o (C}; Xl’g) C o™ (C}; Xl’g).
Since (6.9) and (6.11) imply that o (C/; X/’B) = A U {0}, we can conclude that
AU{0} =0 (Cy; X//S) C o*(C; X//S) C AU{0}).
This, together with (6.12), yields o*(C/; X’ﬂ) =0o*(C;; X) = A U{0}. O
A consequence of Theorem 6.6 is the next result.

Proposition 6.8 Let t € [0,1). Let X belong to any one of the sets: {d,, ¢/ : 1 <
p < ootU{ces(p) : 1 < p < oo} or {€(p+),ces(p+),d(p+) : 1 < p < oo} or
{t(p—),ces(p—),d(p—) : 1 < p < oo}. Then C, € £(X//3) is power bounded and uni-
formly mean ergodic, but not supercyclic.

Proof By Theorem 6.6 the operator C; € L£(X) is power bounded. Since (C;)" = (C}')’, for
every n € Ny, it follows from [38, Sect. 39.3(6)] that also C; € E(XI/S) is power bounded. The
operator C; € L£(X) is also uniformly mean ergodic in X, again by Theorem 6.6. Since X is
barrelled (hence, quasi-barrelled), Lemma 2.1 in [4] implies that C; is uniformly mean ergodic
in X%. If X ¢ {¢', dy}, then X}} is reflexive with (X}});; = X (cf. the proof of Proposition 6.7)
and hence, (C;)" = C;. It follows from (6.9) that C; = C, has plenty of eigenvalues so that
Cle L(X’ﬁ) cannot be supercyclic [ 16, Proposition 1.26]. Finally, suppose that X € {¢!, d;}.
Since C; is compact with 0, (Cy; X) = A (cf. Proposition 2.12 and Remark 3.3), it follows
that ap,(Ct/; X};) = 01 (Cr; X) = A; see [27, Proposition 9.10.2(2)]. Schauder’s theorem
implies that C; € K(X;g) is also compact and hence, again by Proposition 9.10.2(2) of [27],
now applied to C;, we can conclude that o', (C}’; X;j’) =0, (Cl; X/’S) =A.So0,C} € E(X;j’

has plenty of eigenvalues which implies that C; is not supercyclic. O

Remark 6.9 The dynamics of C; € £(X), with X ¢ {£!, d;} belonging to one of the sets in
Theorem 6.6, is quite different. Consider first the Banach space case. For 1 < p < oo, the
operator C; € L(£?) is neither power bounded nor mean ergodic, [5, Proposition 4.2]. Since
(zeC:|z— ”7’| < "7’} C 0, (C}; £7") with % + pi = 1, [40, Theorem 1(b)], C| € L(£P)
cannot be supercyclic, [16, Proposition 1.26]. Similarly, C1 € L(ces(p)), for 1 < p < oo,
is not mean ergodic, not power bounded and not supercyclic, [13, Proposition 3.7(ii)]. Also,
C1 € L(d)p) is not mean ergodic and not supercyclic, [19, Propositions 3.10 & 3.11]. Since
power bounded operators in reflexive Banach spaces are necessarily mean ergodic, [43], C
cannot be power bounded in d),. Turning to Fréchet spaces, for 1 < p < oo the operator
C1 € L(£(p+)) is not mean ergodic, not power bounded and not supercyclic, [8, Theorems
2.3 &2.5], as is the case for C; € L(ces(p—+)), [14, Proposition 5], and for C1 € L(d(p+)),
[21, Proposition 3.5]. For (LB)-spaces, with 1 < p < oo, the operator C; € L(ces(p—)) is
not mean ergodic, not power bounded and not supercyclic, [12, Propositions 3.4 & 3.5], as
is the case for C1 € L(d(p—)), [21, Proposition 3.8]. Finally, the dynamics of C| € L(w) is
the same as for C; € L(w), with ¢ € [0, 1); see Theorem 6.1 above and [8, Proposition 4.3].

The dynamics of C; acting in £(p—) is covered by our final result.

Proposition 6.10 Let p € (1, 0o]. The Cesaro operator C1 € L(€(p—)) is not mean ergodic,
not power bounded and not supercyclic.
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Proof In view of Proposition 5.5(i) the proof follows in a similar way to that of [8, Theorem
2.3]. For the sake of completeness, we indicate the details.
By the discussion prior to Proposition 6.7 we know that (€( p—))js ~ {(p'+). Proposition

5.5(1) implies that HT”/ > 1 belongs to o, (C1; €(p’+)), where % + % = 1. So, there exists

a non-zero vector u € £(p’'+) satisfying C{(u) = 1+Tp/u. Choose any x € ¢(p—) such that

(x,u) # 0. Then

1 1 1/1 \"
<—(cl>"(x>,u>=<x,—(Cﬁ)"(u)>=7< +p) (x,u), neN.
n n n

2

This means that the sequence {%(Cl)”(x)}neN C {¢(p—) cannot be bounded in ¢(p—).
Accordingly, C; is not mean ergodic and not power bounded.

Applying again Proposition 5.5(i), we see that C} has a plenty of eigenvalues. So, C|
cannot be supercyclic, [16, Proposition 1.26]. O
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