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Abstract. We prove maximal regularity for parabolic problems associated to the second-order elliptic
operator

L = � + (a − 1)
N∑

i, j=1

xi x j
|x |2 Di j + c

x

|x |2 · ∇ − b|x |−2

with a > 0 and b, c real coefficients.

1. Introduction

In this paper, we consider second-order elliptic operators of the form

L = � + (a − 1)
N∑

i, j=1

xi x j
|x |2 Di j + c

x

|x |2 · ∇ − b|x |−2 (1)

with a > 0 and b, c constant real coefficients. The leading coefficients are uniformly
elliptic but discontinuous at 0, if a �= 1, and singularities in the lower order terms
appear when b or c is different from 0. The operator commutes with dilations, in the
sense that I−1

s L Is = s2L , if Isu(x) = u(sx). When c = 0 and a = 1, L reduces to a
Schrödinger operator with inverse square potential. Operators of this form have been
widely investigated in previous works. In particular generation properties of analytic
semigroups in L p spaces endowed with the Lebesgue measure, sharp kernel estimates
and Rellich-type inequalities have been proved (see [3,10–16]). Here, we prove that
the following parabolic problem associated with L

{
∂t u(t) − Lu(t) = f (t), t > 0,
u(0) = 0

(2)

has maximal Lq regularity, that is for each f ∈ Lq(0,∞; X) there exists u ∈
W 1,q(0,∞; X) ∩ Lq(0,∞; D(L)) satisfying (2). Here, X is the underlying function
space where L acts and D(L) is the domain of L in X .
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The functional analytic approach we use for proving maximal regularity is widely
described in [9] and in the new books [6,7]. Thewhole theory relies on a deep interplay
between harmonic analysis and structure theory ofBanach spaces but largely simplifies
when the underlying Banach spaces are L p spaces, by using classical square function
estimates. This last approach has been employed extensively in [4], showing that
uniformly parabolic operators have maximal regularity, under very general boundary
conditions.Here,we show that the same happens for a class of degenerate second-order
operators.

We deduce maximal regularity from the R-boundedness of the generated semigroup
in closed sectors of the right half plane, see [4, Chapter 4]. This last is deduced through
an extrapolation result in [1] which involves a family of Muckenhoupt weighted esti-
mates. We show that L has maximal regularity in L p when it generates a semigroup
in L p, that is when the necessary and sufficient conditions of Theorems 2.1 and 2.2
are satisfied. We consider L p spaces with respect to radial power weights |x |m not
just for the sake of generality but because our proof relies on weighted estimates: we
are unable to obtain the result just fixing the Lebesgue measure or the symmetrizing
measure but we have to work simultaneously in different homogeneous spaces. Our
result is known for Schrödinger operators with inverse square potentials, due to a re-
cent result of Bui, see [2]. We adopt his strategy in Sect. 4.1 but new complications
arise due to the lack of symmetry of L in L p(RN ). At a first sight one could think that
the symmetrizing measure (see Sect. 3) plays the same role as the Lebesgue measure
for Schrödinger operators. This is not true, however, and there are situations where the
symmetrizing measure is not doubling and the whole machinery of harmonic analy-
sis in homogeneous spaces breaks down. Let us explain these points by considering
Proposition 4.9. If μm is the Lebesgue measure, maximal regularity follows if L gen-
erates in L2, which is not always the case since L is not symmetric. On the other
hand, if μm is the symmetrizing measure |x |γ dx , one needs N + γ > 0 in order to
work with a doubling measure and this condition would impose extra conditions on
the coefficients of L , not needed for the generation of a semigroup. The generality of
the weights |x |m allows to play with an extra parameter m, prove maximal regularity
when |x |mdx is doubling and L generates both in L2(dμm) and in L p(dμm) and then
recover the general situation by similarity transformations. When |x |m is doubling,
that is when m + N > 0, R boundedness follows from domination of the semigroup
by maximal functions. Both the Euclidean maximal function M f and the weighted
maximal function Mμm f are used and the proof distinguish between m ≥ 0 and
−N < m < 0, where |x |m ∈ Ap.

The paper is organized as follows. In Sect. 2 we briefly recall generation results
for the operator L in L p spaces with respect to the Lebesgue measure and sharp
pointwise kernel estimates needed in the following. Then, in Sect. 3, we consider
the same operators in weighted L p spaces with weights of the form |x |m . A suitable
transformation allows to deduce generation results and kernel estimates in weighted
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spaces from the previous ones. Section 4 is devoted to the main maximal regularity
result.

Notation. We use � for R
N\{0}. The unit sphere {‖x‖ = 1} in R

N is denoted by
SN−1.We denote byC+ := {z; Re z > 0} and for δ ≥ 0,�δ = {z ∈ C : |Arg z| < δ}.
We adopt standard notation for L p and Sobolev spaces and the Lebesgue measure is
understood when no measure is explicitly written.

2. Generation results in L p(RN )

In this section, we recall, without proofs, the main results concerning generation
and domain characterization proved in [13,15]. Kernel estimates are, instead, proved
in [3,11,16].
If 1 < p < ∞, we define the maximal operator L p,max through the domain

D(L p,max) =
{
u ∈ L p(RN ) ∩ W 2,p

loc (RN\{0}) : Lu ∈ L p(RN )
}

. (3)

The operator L p,min is defined as the closure, in L p(RN ) of (L ,C∞
c (RN\{0}) (the

closure exists since this operator is contained in the closed operator L p,max) and it is
clear that L p,min ⊂ L p,max.
Let us employ spherical coordinates on R

N\{0}. For every x ∈ R
N\{0} we write

x = rω, where r := |x |, ω := x
|x | ∈ S

N−1. If u ∈ C2(RN ), Dru, Drru are the radial
derivatives of u and ∇τu is the tangential component of its gradient. They are defined
through the formulas

Dru =
N∑

i=1

Dxi u
xi
r

, Drru =
N∑

i, j=1

Dxi x j u
xi x j
r2

, ∇u = Dru
x

|x | + ∇τu

r
.

Denoting by �0 the Laplace–Beltrami operator on S
N−1, the operator L takes the

form

L = aDrr + N − 1 + c

r
Dr − b − �0

r2
. (4)

The equation Lu = 0 has radial solutions |x |−s1 , |x |−s2 where s1, s2 are the roots of
the indicial equation f (s) = −as2 + (N − 1 + c − a)s + b = 0 given by

s1 := N − 1 + c − a

2a
− √

D, s2 := N − 1 + c − a

2a
+ √

D (5)

where

D := b

a
+

(
N − 1 + c − a

2a

)2

. (6)
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Introducing the parameter

γ = N − 1 + c

a
− N + 1. (7)

we may write

s1,2 = N + γ − 2

2
∓ √

D, D = b

a
+ (N + γ − 2)2

4
.

The above numbers are real if and only if D ≥ 0. In the critical case D = 0, we
often write s0 for s1 = s2. When D < 0 the equation u−Lu = f cannot have positive
distributional solutions for certain positive f , see [15].
Assuming D ≥ 0 we have shown in [13,15] that there exists an intermediate

operator L p,min ⊂ L p,int ⊂ L p,max which generates a semigroup in L p(RN ) if and
only if N

p ∈ (s1, s2 + 2). From now on, we assume that D ≥ 0 and 1 < p < ∞
throughout this paper.

Theorem 2.1. Assume that D > 0. If N
p ∈ (s1, s2 + 2) that is s1 < N

p − 2θ < s2 for
some θ ∈ (0, 1], then L endowed with domain

D(L p,int) = {u ∈ D(L p,max); |x |−2θu ∈ L p}
generates a bounded positive analytic semigroup of angle π/2 on L p. Moreover,

D(L p,int) = {u ∈ D(L p,max); (1 ∧ |x |)2−2θ D2u, (1 ∧ |x |)1−2θ∇u, |x |−2θu ∈ L p}
for all/one θ as above. In particular, if s1 + 2 < N

p < s2 + 2, then θ = 1 and

D(L p,int) = {u ∈ W 2,p(RN ); |x |−1∇u, |x |−2u ∈ L p}.
When N

p �∈ (s1, s2 + 2), then σ(L) = C for every L p,min ⊂ L ⊂ L p,max.

Theorem 2.2. Assume that D = 0. If N
p ∈ (s0, s0 +2), then L endowed with domain

D(L p,int) =
{
u ∈ D(L p,max); |x |−2θ0 | log |x ||− 2

p u ∈ L p(B 1
2
)
}

with θ0 = 1
2 (s0 − N

p ) ∈ (0, 1) generates a bounded positive analytic semigroup of
angle π/2 on L p. Moreover,

D(L p,int) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ D(L p,max);

u ∈ W 2,p
(
R

N\B 1
2

)
,

|x |2−2θ0 |log |x ||− 2
p D2u ∈ L p

(
B 1

2

)
,

|x |1−2θ0 | log |x ||− 2
p ∇u ∈ L p

(
B 1

2

)
,

|x |−2θ0 | log |x ||− 2
p u ∈ L p

(
B 1

2

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

When N
p �∈ (s0, s0 + 2), then σ(L) = C for every L p,min ⊂ L ⊂ L p,max.
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We refer the reader to [15, Theorem 3.29] for a detailed discussion of the inclusion
D(L p,int) ⊂ W 2,p(RN ). As a consequence of the previous results, L generates a
semigroup in some L p(RN ), 1 < p < ∞, if and only if (s1, s2 + 2) ∩ [0, N ] �= ∅.
We remark that, in general, the generated semigroup is not contractive. If a = 1, in
fact, it is contractive if and only if s1 ≤ (N − 2)/p ≤ s2, see [13, Proposition 4.2].
The formal adjoint of L is given by

L∗ = � + (a − 1)
N∑

i, j=1

xi x j
|x |2 Di j + c∗ x

|x |2 · ∇ − b∗|x |−2 (8)

where c∗ = 2(N − 1)(a − 1) − c and b∗ = b + (N − 2)(c − (N − 1)(a − 1)).
Let us compute the numbers s∗

1 , s
∗
2 , D

∗ defined as in (5), (6) and relative to L∗. We
have

D∗ := b∗

a
+

(
N − 1 + c∗ − a

2a

)2

= D, (9)

s∗
1,2 := N − 1 + c∗ − a

2a
∓ √

D∗ = s1,2 + (a − 1)(N − 1) − c

a
= N − 2 − s2,1.

(10)

Observe that N
p > s1 is equivalent to N

p′ < s∗
2 + 2 and N

p < s2 is equivalent to
N
p′ > s∗

1 + 2. Similarly, N
p > s1 + 2 is equivalent to N

p′ < s∗
2 and N

p < s2 + 2 is

equivalent to N
p′ > s∗

1 .
L is formally self-adjoint, that is L = L∗, if and only if c = (a − 1)(N − 1), that is

when γ = 0. Note also that N − s∗
1 = s2 + 2 and s2 + 2− s1 = 2+ 2

√
D. Moreover,

s1 + 2 ≤ s2 if and only if D ≥ 1.
The coefficients of the formal adjoint L∗ of L , taken with respect to the Lebesgue

measure and defined in (8), then satisfy

γ ∗ = −γ, c∗ = c − 2aγ, b∗ = b + a(N − 2)γ, s∗
1,2 = s1,2 − γ. (11)

Proposition 2.3. If p, q satisfy the hypotheses of Theorems 2.1 or 2.2, then the gen-
erated semigroups coincide in L p(RN ) ∩ Lq(RN ). Moreover, (L p,int)

∗ = L∗
p′,int.

In the following propositions we write the above results in a different way and we
also clarify when L p,int coincides with L p,min or L p,max. To shorten the notation we
write

N

α
:=

{
N
α

, if α > 0,

∞, if α ≤ 0,
(12)

Proposition 2.4. The following properties are equivalent

(i) There exists an intermediate operator L p,min ⊂ L p,int ⊂ L p,max which gener-
ates a semigroup on L p(RN ).
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(ii) (s1, s2 + 2) ∩ [0, N ] �= ∅ and N
p ∈ (s1, s2 + 2).

(iii) |x |−s1 , |x |−s∗1 ∈ L1
loc

(
R

N
)
that is s1, s

∗
1 < N and

(
N

s∗
1

)′
< p <

N

s1
.

We now characterize L p,int coincides with L p,min or L p,max.

Proposition 2.5. If D = 0 then L p,min � L p,int � L p,max, whereas if D > 0 then

• L p,int = L p,max if and only if N
p ∈ (s1, s2] or equivalently

(
N

s∗
1 + 2

)′
≤ p <

N

s1
;

• L p,int = L p,min if and only if N
p ∈ [s1 + 2, s2 + 2) or equivalently

(
N

s∗
1

)′
<

p ≤ N

s1 + 2
.

Therefore, the following properties are equivalent:

(i) L p,int = L p,min = L p,max;

(ii) D ≥ 1 and

(
N

s∗
1 + 2

)′
≤ p ≤ N

s1 + 2
(iii) s1 + 2 ≤ s2 and

N
p ∈ [s1 + 2, s2].

Next we show that, under the assumptions of Theorems 2.1 and 2.2, the generated
semigroup ezL consists of integral operators, see [3,11].
For z ∈ C+, x = rω, y = ρη, r, ρ > 0, |ω| = |η| = 1, let

pL(z, x, y) := 1

2az
ργ (rρ)−s1−

√
D exp

{
−r2 + ρ2

4az

} ∞∑

n=0

I√Dn

(
rρ

2az

)
Z

(n)
ω (η).

(13)

Here, Iα is the modified Bessel function of order α > 0, Z
(n)
ω is the zonal spherical

harmonic of order n ∈ N0 and Dn := D + n(n+N−2)
a .

Theorem 2.6. Assume that p ∈]1,∞[ satisfies the condition of Proposition 2.4. Then,

ezL f (x) =
ˆ
RN

pL(z, x, y) f (y)dy, Re z > 0, x, y ∈ �, f ∈ L p
(
R

N
)

. (14)

Moreover, the following properties hold.

(i) pL is analytic on C+, for every fixed x, y ∈ �, it is continuous on C+ × � × �

and pL |y|−γ is symmetric on � × � for every fixed z ∈ C+. Furthermore, one
has

pL(zs, x, y) = s− N
2 pL

(
z,

x√
s
,

y√
s

)
, z ∈ C+, s > 0, x, y ∈ R

N\{0}.
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(ii) For every ε > 0, there exist Cε > 0 and κε > 0 such that for z ∈ C+ satisfying
| arg z| ≤ π

2 − ε, and (x, y) ∈ � × �

|pL (z, x, y)| ≤ Cε|z|− N
2

(
|x |
|z| 12

∧ 1

)−s1 (
|y|
|z| 12

∧ 1

)−s∗1
exp

(
−|x − y|2

κε|z|
)

� Cε|z|− N
2

( |x |
|y|

)− γ
2

(
|x |
|z| 12

∧ 1

)−s1+ γ
2

(
|y|
|z| 12

∧ 1

)−s1+ γ
2

exp

(
−|x − y|2

κε|z|
)

.

where s1 is defined in (5) and s∗
1 in (10).

(iii) For every 1 < p, q < ∞ satisfying the condition of Proposition 2.4, the semi-
groups generated by L, respectively, in L p

(
R

N
)
and in Lq

(
R

N
)
are consistent.

Proof. The existence of the heat kernel as well as its regularity is proved in [3, Theo-
rems 4.3 and 4.5, Corollary 4.6] and in [16] (note that by [16, Lemma 5.4] the semi-
groups in L p

(
R

N
)
and in L2

(
R

N , |x |γ )
, as well as their generators, are consistent).

The decomposition (13) of pL in spherical harmonics is proved in [3, Theorem 4.3],
[11, Proposition 6.7]. (ii) is proved in [3, Corollary 4.6]. The second inequality in
(ii) can be proved as in [16, Corollary 4.15]. The consistency of ezL in all the spaces
L p

(
R

N
)
follows after observing that the kernel pL is independent of p. �

In particular, when s1, s∗
1 ≤ 0 the heat kernel of the generated semigroup satisfies

Gaussian estimates.

3. Generation results in L p(RN, |x|mdx)

In this section, we consider the operator L (keeping the assumption D ≥ 0) in the
space L p(RM , dμm) where dμm = |x |mdx , m ∈ R. The case m = γ , defined in (7),
is important since this measure symmetrizes the operator and will be discussed at the
end of this section. The weighted case is deduced by the unweighted one by the use
of the following multiplication operator.

Proposition 3.1. For k ∈ R, let

Tku(x) := |x |ku(x), x ∈ �.

Then, Tk maps isometrically L p(�, dx)onto L p(�, |x |−kpdx). For every u ∈ W 2,1
loc (�)

one has

T−k LTku = L̃u

where L̃ is the operator defined as in (1) with parameters b, c replaced, respectively,
by

b̃ = b − ak (N − 2 + γ + k) , c̃ = c + 2ak. (15)
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Moreover, the discriminant D̃ and the parameter γ̃ , s̃1,2 of L̃ defined as in (5), (6)
and (7) are given by

D̃ = D, s̃1,2 = s1,2 + k, s̃∗
1,2 = s∗

1,2 − k, γ̃ = γ + 2k. (16)

Proof. Employing spherical coordinates x = rω, r = |x |, ω = x/|x | ∈ S
N−1, we

immediately get

DrTku(x) = rk Dru + krk−1u.

Drr Tku(x) = rk Drru + 2krk−1Dru + k(m − 1)rk−2u.

�0Tku(x) = rk�0u.

Then, recalling (4) one has

LTku(x) = rk
[
aDrru + 2akr−1Dru + ak(k − 1)r−2u

+ N − 1 + c

r

(
Dru + kr−1u

)
− b − �0

r2

]

= rk
[
aDrru + N − 1 + c + 2ak

r
Dru

−
(
b − k(N − 1 + c + a(k − 1))

) u

r2
+ �0

r2

]

= Tk L̃u,

which is the first required claim. The second assertion follows from the definitions
(5), (6) since

D̃ = b̃

a
+

(
N − 1 + c̃ − a

2a

)2

= b

a
− k (N − 2 + γ + k) +

(
N − 1 + c − a + 2ak

2a

)2

= b

a
− k (N − 2 + γ ) − k2 +

(
N − 1 + c − a

2a
+ k

)2

= D − k (N − 2 + γ ) + k
N − 1 + c − a

a
= D.

�

If 1 < p < ∞, we define for k = −m/p

D(Lm,p,max) := Tk
(
D(L̃ p,max)

)
, D(Lm,p,min) := Tk

(
D(L̃ p,min)

)
(17)

and

D(Lm,p,int) := Tk
(
D(L̃ p,int)

)

=
{
u ∈ D(Lm,p,max); |x |−2θu ∈ L p

(
R

N , dμm

)}
(18)
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as one easily verifies (with the usual logarithmic correctionwhen D = 0). The operator
Lm,p,min is the closure, in L p(RN , dμm) of (L ,C∞

c (�)). We also define

W 2,p(�, dμm) =
{
u ∈ L1

loc (�) : u,∇u, D2u ∈ L p (�, dμm)
}

,

where ∇u, D2u consist of weak derivatives of u in � (not in R
N ). For a fixed ball B

centered at the origin, W 2,p(RN\B, dμm) is defined in a similar way.
In what follows we extend the result of the previous section by showing that L

generates a semigroup in L p(�, dμm) for any 1 < p < ∞ satisfying s1 < N+m
p <

s2 + 2. All the results for L in L p
(
R

N , dμm
)
are immediate consequence of those of

L̃ in L p(RN , dx), using the isometry T−m/p.

Theorem 3.2. Assume that D > 0. If N+m
p ∈ (s1, s2+2) that is s1 < N+m

p −2θ < s2
for some θ ∈ (0, 1], then L endowed with domain

D(Lm,p,int) = {u ∈ D(Lm,p,max); |x |−2θu ∈ L p
(
R

N , dμm

)
}

generates a bounded positive analytic semigroup of angle π/2 on L p
(
R

N , dμm
)
.

Moreover,

D(Lm,p,int) =
{
u ∈ D(Lm,p,max) : (1 ∧ |x |)2−2θ D2u, (1 ∧ |x |)1−2θ∇u,

|x |−2θu ∈ L p
(
R

N , dμm

) }

for all/one θ as above. In particular, if s1 + 2 < N+m
p < s2 + 2, then θ = 1 and

D(Lm,p,int) =
{
u ∈ W 2,p(�, dμm); |x |−1∇u, |x |−2u ∈ L p

(
R

N , dμm

)}
.

When N+m
p �∈ (s1, s2 + 2), then σ(L) = C for every Lm,p,min ⊂ L ⊂ Lm,p,max.

Theorem 3.3. Assume that D = 0. If N
p ∈ (s0, s0 +2), then L endowed with domain

D(Lm,p,int) =
{
u ∈ D(Lm,p,max); |x |−2θ0 | log |x ||− 2

p u ∈ L p(B 1
2
, dμm)

}

with θ0 = 1
2 (s0 − N

p ) ∈ (0, 1) generates a bounded positive analytic semigroup of

angle π/2 on L p
(
R

N , dμm
)
. Moreover,

D(Lm,p,int) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ D(Lm,p,max);

u ∈ W 2,p
(
R

N\B 1
2
, dμm

)
,

|x |2−2θ0 | log |x ||− 2
p D2u ∈ L p

(
B 1

2
, dμm

)
,

|x |1−2θ0 | log |x ||− 2
p ∇u ∈ L p

(
B 1

2
, dμm

)
,

|x |−2θ0 | log |x ||− 2
p u ∈ L p

(
B 1

2
, dμm

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

When N+m
p �∈ (s0, s0 + 2), then σ(L) = C for every Lm,p,min ⊂ L ⊂ Lm,p,max.
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Let us denote by IN+m the closed interval with endpoints 0 and N + m (note that
N + m < 0 is allowed). As a consequence of the previous Theorems, L generates a
semigroup in some L p(RN , dμm), 1 < p < ∞, if and only if (s1, s2+2)∩ IN+m �= ∅.

In the following Proposition we compute the adjoint L∗m of L with respect to the
measure μm = |x |mdx .
Proposition 3.4. The adjoint of Lm,p,int is L∗m

m,p′,int where

L∗m = � + (a − 1)
N∑

i, j=1

xi x j
|x |2 Di j + c∗m x

|x |2 · ∇ − b∗m |x |−2 (19)

and

c∗m = c − 2a(γ − m) = c∗ + 2am,

b∗m = b + a(N + m − 2)(γ − m) = b∗ + am(γ − m − N + 2).

The parameters s∗m
1,2, γ

∗m, D∗m defined as in (5), (6) and relative to L∗m are

D∗m = D, γ ∗m = −γ + 2m, s∗m
1,2 = s1,2 − γ + m = s∗

1,2 + m.

Proof. Note that if 1 < p < ∞ and k ∈ R, then the adjoint operator of the isometry
Tk : L p(�, dx) → L p(�, |x |−kpdx) defined in Proposition 3.1 is the operator T ∗

k =
Tk(1−p). In this way, since by definition L = T−m

p
L̃Tm

p
, where L̃ is the operator acting

on L p
(
R

N
)
and defined by taking k = −m

p in Proposition 3.1, one has

L∗m =
(
Tm

p

)∗ (
L̃
)∗ (

T−m
p

)∗ = T− m
p′

(
L̃
)∗

Tm
p′

.

Theparameters of L∗m can be computed using (11) andProposition 3.1. The equality
(Lm,p,int)

∗m = (L∗m)m,p′,int is consequence, via the isometry T− m
p′
, of the analogous

property of L̃∗ in L
′ p(RN , dx) stated in Proposition 2.3. �

Note that L is self-adjoint with respect to the measure μm = |x |mdx if and only if
m = γ .

In the following Proposition we show an equivalent characterization of the range
of p for which L generates a semigroup on L p

(
R

N , dμm
)
.

In what follows when N + m > 0 we adopt the notation

N + m

α
:=

{
N+m

α
, if α > 0,

∞, if α ≤ 0.
(20)

Proposition 3.5. The following properties are equivalent.

(i) There exists an intermediate operator Lm,p,min ⊂ Lm,p,int ⊂ Lm,p,max which
generates a bounded positive analytic semigroup of angleπ/2 on L p(RN , dμm).

(ii) (s1, s2 + 2) ∩ IN+m �= ∅ and N+m
p ∈ (s1, s2 + 2).
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In particular:

(a) When N + m < 0 then (i) is equivalent to s1, s∗m
1 < 0 and

N + m

s1
< p <

(
N + m

s∗m
1

)′
.

(b) When N + m = 0 then (i) is equivalent to s1, s∗m
1 < 0 and 1 < p < ∞;

(c) When N + m > 0 then (i) is equivalent to |x |−s1 , |x |−s∗m1 ∈ L1
loc

(
R

N , dμm
)

that is s1, s
∗m
1 < N + m and

(
N + m

s∗m
1

)′
< p <

N + m

s1
.

Furthermore, p = 2 satisfies the above assumptions if and only if |γ − m| <

2
(
1 + √

D
)
.

The coincidence of Lm,p,int with Lm,p,min or L p,max can be obtained similarly from
Proposition 2.5 but we do not state it here.

Let us compute the kernel of the generated semigroup

Proposition 3.6. Let 1 < p < ∞ satisfies the condition of Proposition 3.5. Then, for
z ∈ C+

ezL f (x) =
ˆ
RN

pm(z, x, y) f (y)dμm(y), t > 0, x, y ∈ �, f ∈ L p
(
R

N , dμm

)

(21)

with pm(z, x, y) = |y|−m pL(z, x, y) and pL defined in (13). Moreover, the following
properties hold

(i) For every ε > 0, there exist Cε > 0 and κε > 0 such that for z ∈ C+ satisfying
| arg z| ≤ π

2 − ε, and (x, y) ∈ � × �

|pm(z, x, y)| ≤ Cε|z|− N
2 |y|−m

(
|x |
|z| 12

∧ 1

)−s1 (
|y|
|z| 12

∧ 1

)−s∗1
exp

(
−|x − y|2

κε|z|
)

.

where s1 is defined in (5), s∗
1 in (10) and s∗m

1 in Proposition 3.4. Furthermore, if
m ≥ 0 then

|pm(z, x, y)| ≤ Cε|z|− N+m
2

(
|x |
|z| 12

∧ 1

)−s1 (
|y|
|z| 12

∧ 1

)−s∗m1
exp

(
−|x − y|2

κε|z|
)

.

(iii) If m, n ∈ R and 1 < p, q < ∞ satisfy the generation conditions of Proposi-
tion 2.4 in both L p

(
R

N , dμm
)
and Lq

(
R

N , dμn
)
. Then, the semigroups gen-

erated by L in Lq
(
R

N , dμm
)
and in Lq

(
R

N , dμn
)
are consistent.
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Proof. Let us consider the isometry T−m
p

: L p(�, dx) → L p(�, |x |mdx). Then, by
the definition, we have for every u ∈ L p(�, |x |mdx)

ezLu = T−m
p
ezL̃

(
Tm

p
u
)

where L̃ is the operator on L p
(
R

N
)
defined as in (1) with parameters b̃, c̃ defined

by (15). Let p(z, x, y) the heat kernels of
(
ezL

)
z∈C+ on L p

(
R

N , dμm
)
taken with

respect to the Lebesgue measure. The last relation between the semigroups translate
into the analogous equality for the heat kernels:

p(z, x, y) = |x |−m
p pL̃(z, x, y)|y|mp .

Recalling (13) and setting x = rω, y = ρη, r, ρ > 0, |ω| = |η| = 1, the last relation
yields

p(z, x, y) = 1

2at
r− m

p ρ
γ̃+ m

p (rρ)−s̃1−
√
D exp

{
−r2 + ρ2

4az

} ∞∑

n=0

I√Dn

(
rρ

2az

)
Z

(n)
ω (η)

= 1

2at
r− m

p ρ
γ− m

p (rρ)
−s1+ m

p −√
D exp

{
−r2 + ρ2

4az

} ∞∑

n=0

I√Dn

(
rρ

2az

)
Z

(n)
ω (η)

= pL (z, x, y),

where we used the fact that, from (16), we have D̃ = D, s̃1,2 = s1,2+ m
p , γ̃ = γ −2m

p .
The other claims follow directly from Theorem 2.6. The estimate for m ≥ 0 follows
after observing that, in this case,

|y|−m (|y| ∧ 1)−s∗m1 +m ≤ (|y| ∧ 1)−s∗m1 , y ∈ �.

�

Let us end this section with some comments on the special case m = γ , see (7).
Writing

L = |y|−γ div
(
|x |γ ā(x)∇

)
− b|x |−2,

ā(x) = IN + (a − 1)
x ⊗ x

|x |2 ,

we can see that L is associated to the symmetric form

a(u, v) =
ˆ
RN

(
〈ā∇u,∇v〉 + b|y|−2uv

)
dμγ

which is coercive if and only if D ≥ 0. Then, L is self-adjoint in L2(dμγ ) and the
generation conditions in L p(dμγ ) of Proposition 3.5 take the form

|(N + γ )(1/2 − 1/p)| < 1 + √
D.

We refer to [3,11,16] for this approach.
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4. Maximal regularity

An analytic semigroup T (·) on a Banach space X with generator B has maximal
regularity of type Lq (1 < q < ∞) if for each f ∈ Lq([0, T ], X) the function
t �→ u(t) = ´ t

0 T (t − s) f (s) ds belongs to W 1,q([0, T ], X) ∩ Lq([0, T ], D(B)).
This means that the mild solution of the evolution equation

u′(t) = Bu(t) + f (t), t > 0, u(0) = 0,

is in fact a strong solution and has the best regularity one can expect. It is known
that this property does not depend on 1 < q < ∞ and T > 0. In recent years this
concept has thoroughly been studied and applied in various directions, see [4,9] for
applications to uniformly parabolic problems under general boundary conditions. A
characterization ofmaximal regularity is available inUMDBanach spaces, through the
R-boundedness of the resolvent in sector larger than the right half planeor, equivalently,
of the semigroup in a sector around the positive axis, can be largely simplified when
X = L p (with respect to any measure), through the classical tool of square functions
estimates. This is what we use and recall here after, see [9, Theorem 1.11, Remark 2.9]

Theorem 4.1. Let T (·) be a bounded analytic semigroup in L p. Then, T (·) has max-
imal regularity of type Lq if and only if there is a constant C > 0 such that for every
z ∈ �δ , δ > 0, fi ∈ L p

∥∥∥∥∥∥

(
∑

i

|T (zi ) fi |2
) 1

2

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥

(
∑

i

| fi |2
) 1

2

∥∥∥∥∥∥
p

.

4.1. Muckenhoupt weighted estimates

Let (S, d, ν) be a space of homogeneous type, that is a metric space endowed
with a Borel measure ν which is doubling on balls. When X = L p (S, d, ν) the square
function estimate in Theorem 4.1 can be reduced to a family ofMuckenhoupt weighted
estimates of the type

‖T (z) f ‖L p(w) ≤ C‖ f ‖L p(w),

see Theorem 4.4 as follows. With this in mind, we recall preliminarily, the definition
and the essential properties aboutMuckenhouptweights. For the proof of the following
results as well as for further details, we refer the reader to [1, Chapter 2 and 5] and [18,
Chapter 1]. Let w be a weight, i.e., a nonnegative locally integrable function defined
on S; we use the notation

−
ˆ
E

w = 1

ν(E)

ˆ
E

w(x) dν(x), w(E) =
ˆ
E

w(x) dν(x).

Let M denote the uncentered maximal operator over balls in S defined by

Mν f (x) := sup
B�x

−
ˆ
B

| f |, x ∈ S, (22)
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where the supremum is taken over all balls of S containing x . We recall that M is
bounded on L p(w) if and only if w ∈ Ap, see for example [5, Theorem 7.3].

We say that w ∈ Ap, 1 < p < ∞, if there exists a constant C such that for every
ball B ⊆ S one has

(
−
ˆ
B

w
) (

−
ˆ
B

w1−p′)p−1 ≤ C. (23)

For p = 1, we say that w ∈ A1 if there is a constant C such hat Mνw ≤ C w a.e..
The weight w is in the reverse Hölder class of order q, w ∈ RHq , 1 < q ≤ ∞, if

there is a constant C such that for every ball B ⊆ S

(
−
ˆ
B

wq
) 1

q ≤ C −
ˆ
B

w,

with the usual modification for q = ∞. The best constants appearing in the previous
inequalities are referred, respectively, as the Ap and the RHq constants of w.
We sum up in the following propositions the properties we need about these classes

of weights.

Proposition 4.2. The following properties hold:

(i) A1 ⊂ Ap ⊂ Aq for every 1 ≤ p ≤ q ≤ ∞;
(ii) w ∈ Ap, 1 < p < ∞, if and only if w1−p′ ∈ Ap′ ;
(iii) If w ∈ Ap, 1 < p < ∞, then there exists 1 < q < p such that w ∈ Aq;
(iv) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q ≤ ∞;
(v) If w ∈ RHq, 1 < q < ∞, then there exists q < p < ∞ such that w ∈ RHp;
(vi) A∞ := ⋃

1≤p<∞ Ap = ⋃
1<q≤∞ RHq .

(vii) Let 1 < p0 < p < q0 < ∞. Then, we have

w ∈ A p
p0

∩ RH(
q0
p

)′ ⇐⇒ w
− p′

p = w1−p′ ∈ A p′
q′
0

∩ RH(
p′0
p′

)′ .

(viii) If 1 ≤ p ≤ ∞ and 1 ≤ r < ∞ then

w ∈ Ap ∩ RHr ⇐⇒ wr , w
− 1

p−1 ∈ A∞ ⇐⇒ wr ∈ Ar (p−1)+1.

Proof. Properties (i)-(vi) can be found in [5, Chapter 7], [18, Chapter 1]. Point
(vii) follows as in [1, Lemma 4.4]. The first equivalence in (viii) is proved in [18,
Lemma 11, Chapter 1]; the second follows as in [8]. �

A proof of the following result is in [18, Corollary 14] or [5, Chapter 7].

Lemma 4.3. Let w ∈ Ap ∩ RHr , 1 < r, p < ∞. Then, there exists a constant C > 1
such that for any ball B and any measurable subset E ⊂ B,

C−1
(

ν(E)

ν(B)

)p

≤ w(E)

w(B)
≤ C

(
ν(E)

ν(B)

) r−1
r

.



Vol. 21 (2021) Maximal regularity for elliptic operators 3627

Wenow state an extrapolation result originally due toRubio deFrancia, adapted as in
[1, Theorem 4.9], which allows to reduce the square function estimate in Theorem 4.1
to a family of Muckenhoupt weighted estimates. Only weights and pairs of functions
appear and no operator is involved. In what followswe consider familiesF = {( f, g) :
f, g ∈ L0+(S)}, where L0+(S) is the set of all nonnegative, measurable functions
defined on S.

Theorem 4.4. Let (S, d, ν) be a space of homogeneous type and let F ⊆ L0+(S) ×
L0+(S). Suppose that there exists p with p0 ≤ p ≤ q0 (and p < ∞ if q0 = ∞), such
that for ( f, g) ∈ F ,

‖ f ‖L p(w) ≤ C‖g‖L p(w), for all w ∈ A p
p0

∩ RH(
q0
p

)′ ,

Then, for all p0 < q < q0 and ( f, g) ∈ F we have

‖ f ‖Lq (w) ≤ C ‖g‖Lq (w), for all w ∈ A q
p0

∩ RH(
q0
q

)′ ,

Moreover, for all p0 < q, r < q0 and {( f j , g j )} ⊂ F we have

∥∥∥
( ∑

j

( f j )
r
)1/r∥∥∥

Lq (w)
≤ C

∥∥∥
(∑

j

(g j )
r
)1/r∥∥∥

Lq (w)
, for all w ∈ A q

p0
∩ RH(

q0
q

)′ .

All the constant C above may vary from line to line but depend only on the Ap and
RHq constants of w.

Combining Theorems 4.1 and 4.4 we derive the following characterization of max-
imal regularity in terms of boundedness over L p(w) spaces.

Theorem 4.5. Let (S, d, ν) be a space of homogeneous type and let T (·) be a bounded
analytic semigroup in L p (S, ν) defined in a sector �δ , δ > 0. Let 0 < p0 < q0 ≤ ∞.
Suppose that p0 < 2 < q0 and that there exists p with p0 ≤ p ≤ q0 (and p < ∞ if
q0 = ∞), such that for f ∈ L p (S, ν),

‖T (z) f ‖L p(w) ≤ C‖ f ‖L p(w), for all z ∈ �δ, for all w ∈ A p
p0

∩ RH(
q0
p

)′ ,

Then, for all p0 < q < q0, T (·) has maximal regularity on Lq(w) for all w ∈
A q

p0
∩ RH(

q0
q

)′ .

The following three lemmas will be crucial in the proof of maximal regularity.

Lemma 4.6. Let w ∈ Ap, p ≥ 1, and let νw be the measure wdν. Denote by Mνw

and Mν the maximal function defined by νw and ν. Then, (S, d, νw) is a space of
homogeneous type and

Mν f ≤ Ap(w)
1
p
(Mνw | f |p) 1

p , f ∈ L1
loc (S, ν) ,

where Ap(w) is the Ap constant of w.
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Proof. Thedoubling condition for themeasureνw follows from that ofν andLemma4.3.
To prove the second claim, let f ∈ L1

loc (S, ν). Then, for every ball B of S one has,
applying Hölder’s inequality,

1

ν(B)

ˆ
B

| f |dν = 1

ν(B)

ˆ
B

| f |w 1
p w

− 1
p dν ≤ 1

ν(B)

(ˆ
B

| f |pwdν

) 1
p

(ˆ
B

w1−p′
dν

) 1
p′

.

Using (23) we get

1

ν(B)

ˆ
B

| f |dν ≤ Ap(w)
1
p

(
1

νw(B)

ˆ
B

| f |pwdν

) 1
p

which, taking the supremum over B, yields the required claim. The case p = 1 follows
similarly. �

Lemma 4.7. Let p be a nonnegative, locally integrable function on R
N and consider

the measure ν = p dx. Let Mν be the uncentered maximal operator relative to ν,
defined as in (22). If 0 ≤ φ ∈ L1

(
R

N , ν
)
is radial and decreasing then

|(φ ∗ p f )(x)| ≤ ‖φ‖L1(RN ,ν)Mν f (x), x ∈ R
N , f ∈ L1

loc

(
R

N , ν
)

.

If p is homogeneous of degree k, i.e., p(t x) = p(x)tk for all x ∈ R
N and t > 0, then

setting φt := t−N−kφ(t−1x) one has

sup
t>0

|(φt ∗ p f )(x)| ≤ ‖φ‖L1(RN ,ν)Mν f (x).

Proof. Let us suppose preliminarily that φ is a simple function and let us write, for
some a1, . . . , ak > 0 and balls B1, . . . , Bk centered at 0,

φ(x) =
k∑

j=1

a jχBj (x).

Then, since ‖φ‖L1(RN ,ν) = ∑k
j=1 a j ν(Bj ) and (χBj ∗ p f )(x) = ´

x−Bj
f (y)dν, we

get

(φ ∗ p f )(x) =
k∑

j=1

a j ν(Bj )
1

ν(Bj )
(χBj ∗ p f )(x) ≤ ‖φ‖L1(RN ,ν)Mν f (x).

In the general case the first required claim follows since φ can be approximated by a
sequence of simple functions which increase to it monotonically. To prove the second
claim it is enough to observe that, under the homogeneity assumptions on p, one has
‖φt‖L1(RN ,ν) = ‖φ‖L1(RN ,ν) �

Lemma 4.8. Let m ∈ R such that N + m > 0 and let dμm = |x |mdx. For every
k ∈ R let us consider the radial weight w(x) = |x |k . The following properties hold.
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(i) If 1 ≤ p ≤ ∞ thenw ∈ Ap (μm) if and only if−(N+m) < k < (N+m)(p−1).
(ii) If 1 ≤ p ≤ ∞ and 1 ≤ r < ∞ then w ∈ Ap(μm) ∩ RHr (μm) if and only if

− N+m
r < k < (N + m)(p − 1).

Proof. To prove (i), we start by considering balls of center x0 and radius 1. Fix R > 1

and assume first that |x0| ≤ R. Then, both |x |k and |x |− k
p−1 are integrable in B(x0, 1)

with respect to the measure μm and

(
1

μm(B(x0, 1))

ˆ
B(x0,1)

|x |k dμm

) (
1

μm(B(x0, 1))

ˆ
B(x0,1)

|x |− k
p−1 dμm

)p−1

≤ C

(24)

for some positive constant C depending on R. On the other hand, when |x0| > R,
then

(
1

μm(B(x0, 1))

ˆ
B(x0,1)

|x |k dμm

)
≈ |x0|k,

(
1

μm(B(x0, 1))

ˆ
B(x0,1)

|x |− k
p−1 dμm

)p−1

≈ |x0|−k

and the left hand side in (24) is bounded from above and below by a constant. For a
general ball of radius r the claim follows by scaling. Property (ii) follows using (i)
and property (viii) of Proposition 4.2. �

4.2. Maximal regularity when N + m > 0

Let m ∈ R be such that N +m > 0 and let us consider the measure dμm = |x |mdx
on R

N . Denoting by d the Euclidean distance,
(
R

N , d, μm
)
is of homogeneous type.

In what follows we write Ap(μm), RHp(μm),Mμm to denote, respectively, the class
ofMuckenhoupt weights, the reverse Hölder class and themaximal function over balls
taken with respect to the measure μm . When m = 0 we write Ap, RHp, M.

We fix 0 < δ < π/2 and we recall that for z ∈ �δ , z = ωt , t = |z|, Proposition 3.6
yields the pointwise estimate

|T (z) f (x)| ≤ Ct−
N
2

( |x |√
t

∧ 1

)−s1 ˆ
RN

( |y|√
t

∧ 1

)−s1+γ

exp

(
−|x − y|2

κt

)
| f (y)| dy. (25)

When m ≥ 0 we also have

|T (z) f (x)| ≤ Ct−
N+m
2

( |x |√
t

∧ 1

)−s1 ˆ
RN

( |y|√
t

∧ 1

)−s∗m1

exp

(
−|x − y|2

κt

)
| f (y)| dμm(y). (26)
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We prove theR-boundedness of the family (T (z))z∈�δ using the extrapolation result
of Theorem 4.4. We follow the proof in [2, Theorem 2.9] but new complications arise
because the operator is non-symmetric and the measure μm is not the Lebesgue one.
In particular we have to distinguish between the cases m ≥ 0 and −N < m < 0 and
both the maximal functions with respect to the Lebesgue measure and the weighted
one appear.
For the reader’s convenience, in what follows we write for z ∈ �δ , B = B(0,

√
t),

t = |z|, and

T (z) f = χBc (T (z) f χBc ) + χB (T (z)( f χB)) + χBc (T (z) f χB) + χB (T (z)( f χBc ))

:= T1(z) f + T2(z) f + T3(z) f + T4(z) f. (27)

Proposition 4.9. Let N +m > 0, 1 < p < ∞ and let us suppose that the generation
conditions of Proposition 3.5 are satisfied, that is

s1, s
∗m
1 < N + m,

(
N + m

s∗m
1

)′
< p <

N + m

s1
. (28)

Then, for every weight

w ∈ A p(
N+m
s∗m1

)′ (μm) ∩ RH(
N+m
s1 p

)′(μm)

there exist C > 0 depending on δ and the Ap(μm) and Rp(μm) constants of w such
that for every z ∈ �δ one has

‖T (z) f ‖L p(w) ≤ C‖ f ‖L p(w), f ∈ L p(RN , wdμm) =: L p(w).

Finally, if |γ − m| < 2
(
1 + √

D
)

then T (·) has maximal regularity on

L p(RN , wdμm).

We split the proof in four lemmas according to (27).

Lemma 4.10. The estimate of Proposition 4.9 holds for (T1(z))z∈�δ .

Proof. Assume first that m ≥ 0. Then, using (26) and Lemma 4.7 with p(y) = |y|m
we get

|T1(z) f (x)| ≤ Ct−
N+m
2

ˆ
RN

exp

(
−|x − y|2

κt

)
| f (y)| dμm(y) ≤ CMμm f (x),

The claim then follows since Mμm is bounded on L p(w).
When −N < m < 0 we use (25) (and Lemma 4.7 with respect to the Lebesgue

measure) to get
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|T1(z) f (x)| ≤ Ct−
N
2

ˆ
RN

exp

(
−|x − y|2

κt

)
| f (y)|χBc (y) dy ≤ CM f (x),

Since w ∈ A p(
N+m
s∗m1

)′ (μm), by Proposition 4.2 there exists r sufficiently close to

(
N+m
s∗m1

)′
such that

(
N+m
s∗m1

)′
< r < p < N+m

s1
andw ∈ A p

r
(μm). Since−N < m < 0,

Lemma 4.8 (i) gives |x |m ∈ Ar (dx) and then Lemma 4.6 yields

|T1(z) f (x)| ≤ C
(Mμm | f |r (x)) 1

r .

Since w ∈ A p
r
(μm), Mμm is bounded on L

p
r (w) and we get ‖T1(z) f ‖L p(w) ≤

C‖ f ‖L p(w). �

Lemma 4.11. The estimate of Proposition 4.9 holds for (T2(z))z∈�δ .

Proof. Using (25) and Hölder’s inequality we get

|T2(z) f (x)| ≤ Ct−
N+m
2

( |x |√
t

)−s1 ˆ
B

( |y|√
t

)−s∗m1 | f (y)| dμm(y)

≤ Ct−
N+m
2

( |x |√
t

)−s1
‖ f ‖L p(w)

(ˆ
B

( |y|√
t

)−s∗m1 p′

w(y)1−p′
dμm(y)

) 1
p′

.

Setting v = w1−p′
this implies

‖T2(z) f ‖p
L p(w) ≤ Ct−

N+m
2 p‖ f ‖p

L p(w)

(ˆ
B

( |y|√
t

)−s∗m1 p′

v(y) dμm(y)

) p
p′

ˆ
B

( |x |√
t

)−s1 p

w(x) dμm(x).

Let us treat the first integral. If s∗m
1 > 0, then one has

ˆ
B

( |y|√
t

)−s∗m1 p′

v(y) dμm(y) =
∑

j≥0

ˆ
2− j−1≤ |y|√

t
<2− j

( |y|√
t

)−s∗m1 p′

v(y) dμm(y)

≤ C
∑

j≥0

2 js∗m1 p′
v(2− j B).

By property (vii) of Proposition 4.2, v ∈ A p′(
N+m
s1

)′
∩ RH(

N+m
s∗m1 p′

)′ ; by property (v) of

Proposition 4.2 there exists r > p′ such that v ∈ RH(
N+m
s∗m1 r

)′ . Lemma 4.3 then implies

v(2− j B) ≤ Cv(B)

(
μm

(
2− j B

)

μm (B)

) s∗m1 r
N+m

= Cv(B)2− jrs∗m1 .
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Therefore, since s∗m
1 > 0

ˆ
B

( |y|√
t

)−s∗m1 p′

v(y) dμm(y) ≤ Cv(B)
∑

j≥0

2− js∗m1 (r−p′) = Cv(B).

The last inequality holds also when s∗m
1 ≤ 0, since in this case

ˆ
B

( |y|√
t

)−s∗m1 p′

v(y) dμm(y) ≤
ˆ
B

v(y) dμm(y) = v(B).

Similarly if s1 > 0 then

ˆ
B

( |x |√
t

)−s1 p

w(x) dμm(x) =
∑

j≥0

ˆ
2− j−1≤ |x |√

t
<2− j

( |x |√
t

)−s1 p

w(x) dμm(x)

≤ C
∑

j≥0

2 js1 pw(2− j B).

Sincew ∈ A p(
N+m
s∗M1

)′ ∩RH(
N+m
s1 p

)′ by property (v) of Proposition 4.2 there exists r > p

such that w ∈ RH(
N+m
s1r

)′ . By Lemma 4.3 then

w(2− j B) ≤ Cw(B)2− jrs1 .

Therefore

ˆ
B

( |x |√
t

)−s1 p

w(x) dμm(x) ≤ Cw(B)
∑

j≥0

2− js1(r−p) = Cw(B).

The last inequality holds also when s1 ≤ 0, since in this case

ˆ
B

( |x |√
t

)−s1
w(x) dμm(x) ≤

ˆ
B

w(x) dμm(x) = w(B).

Putting together the last inequalities we have in any case

‖T2(z) f ‖p
L p(w) ≤ C‖ f ‖p

L p(w)t
−p N+m

2 (v(B))
p
p′ w(B).

Since s∗m
1 < N +m from property (i) of Proposition 4.2 we get w ∈ A p(

N+m
s∗m1

)′ ⊆ Ap

which implies, by the definition (23) of Ap weights, supt>0 t
−p N+m

2 (v(B))
p
p′ w(B) <

∞. �
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Lemma 4.12. The estimate of Proposition 4.9 holds for (T3(z))z∈�δ .

Proof. Using (25) we get

|T3(z) f (x)| ≤ Ct−
N+m
2

ˆ
B

( |y|√
t

)−s∗m1
exp

(
−|x − y|2

κt

)
| f (y)| dμm(y).

Let us fix r such that
(
N+m
s∗m1

)′
< r < p < N+m

s1
. Applying Hölder’s inequality we

obtain

|T3(z) f (x)| ≤ C

(
t−

N+m
2

ˆ
RN

exp

(
−|x − y|2

κt

)
| f (y)|r dμm(y)

) 1
r

×
(
t−

N+m
2

ˆ
B

( |y|
t
1
2

)−s∗m1 r ′

dμm(y)

) 1
r ′

.

The substitution z = y/
√
t and Lemma 4.7 yield

|T3(z) f (x)| ≤ C
(Mμm | f |r (x)) 1

r

(ˆ
B(0,1)

|z|−s∗m1 r ′+m dz

) 1
r ′ = C

(Mμm | f |r (x)) 1
r

Since w ∈ A p(
N+m
s∗m1

)′ , by Proposition 4.2 there exists r sufficiently close to
(
N+m
s∗m1

)′

such that
(
N+m
s∗m1

)′
< r < p < N+m

s1
and w ∈ A p

r
. This implies thatMμm is bounded

on L
p
r (w) which, using the latter inequality, proves the required claim. �

To prove the boundedness of T4(z) we apply a duality argument. With this aim, let
p,m satisfy the assumptions in (28) and let T ∗m(z) be the adjoint of T (z) taken with
respect to the measure μm . The conditions in (28) are equivalent to

s1, s
∗m
1 < N + m,

N + m

s1
< p′ <

(
N + m

s∗m
1

)′
.

If L∗m is the adjoint operator defined by Proposition 3.4, then the last conditions
assures that L∗m generates a bounded analytic semigroup in L p′ (

R
N , μm

)
which

coincides with T ∗m(z).
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Lemma 4.13. The estimate of Proposition 4.9 holds for (T4(z))z∈�δ .

Proof. We apply a duality argument. Let g ∈ L p′
(RN , wμm); since T4(z) = T ∗m

3 (z)
we obtain

ˆ
RN

T4(z) f gwμm =
ˆ
RN

f T ∗m
3 (z)(gw)μm =

ˆ
RN

f
T ∗m
3 (z)(gw)

w
wμm .

Using Hölder’s inequality we then yield
∣∣∣∣
ˆ
RN

T4(z) f gwμm

∣∣∣∣ ≤ ‖ f ‖L p(ω)

∥∥∥∥
T ∗m
3 (z)(gw)

w

∥∥∥∥
L p′ (ω)

= ‖ f ‖L p(ω)

∥∥T ∗m
3 (z)(gw)

∥∥
L p′ (ω1−p′ ) .

Using Lemma 4.12 with L and p replaced, respectively, by L∗m and p′ we get
∣∣∣∣
ˆ
RN

T4(z) f gwμm

∣∣∣∣ ≤ C‖ f ‖L p(ω) ‖gw‖L p′ (ω1−p′ ) = C‖ f ‖L p(ω) ‖g‖L p′ (ω)

which concludes the proof. �

We can finally prove Proposition 4.9.

Proof of Proposition 4.9. The first claim follows by using (27) and

Lemmas 4.10, 4.11, 4.12, 4.13. If |γ − m| < 2
(
1 + √

D
)
then the R-boundedness

of (T (z))z∈�δ on L p(RN , wdμm) follows by Theorems 4.1, 4.5 since, in this case, by
Proposition 3.5, p = 2 satisfies (28). �

4.3. Maximal regularity without restrictions on m

Let us start with the case of the Lebesgue measure, that is when m = 0.

Theorem 4.14. Let 1 < p < ∞ and let us suppose that the generation conditions of
Proposition 2.4 are satisfied, that is

s1, s
∗
1 < N ,

(
N

s∗
1

)′
< p <

N

s1
.

Then, T (·) has maximal regularity on L p(RN ).

Proof. Let s1 < N
p < s2 + 2. If |γ | < 2

(
1 + √

D
)
, the required claim follows by

using Proposition 4.9 withm = 0 andw = 1. Let us suppose now |γ | ≥ 2
(
1 + √

D
)
;

in this case, from Proposition 3.5, L does not generate a semigroup in L2
(
R

N
)
and

therefore p �= 2. Let m ∈ R and let us consider the isometry

Tm
p

: L p(�, |x |mdx) → L p(�, dx), u �→ |x |mp u.
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Using Proposition 3.1 we have

T−m
p
LTm

p
u = L̃u

where L̃ is the operator defined as in (1) with parameters b, c defined by (15); in
particular we have γ̃ = γ + 2m

p . Let T̃ (z) = T−m
p
T (z)Tm

p
be the analytic semigroup

generated by L̃ . From the latter equality one can easily deduce that (T (z))z∈�δ is
R-bounded on L p(RN ) if and only if there exists m ∈ R such that (T̃ (z))z∈�δ is
R-bounded on L p(RN , |x |mdx). From Proposition 4.9 this is equivalent to require

∣∣∣∣γ + m

(
2

p
− 1

)∣∣∣∣ = |γ̃ − m| < 2
(
1 + √

D
)

, N + m > 0,

(note that, by construction, the generation conditions for L̃ in L p(RN , |x |mdx) are
implicitly satisfied). By elementary calculation the latter inequalities read as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N + m > 0;
m

(
1
p − 1

2

)
< N

2 − s1;
m

(
1
p − 1

2

)
> N

2 − (s2 + 2),

If p < 2 the system has a solution m when

N

2
− (s2 + 2) < −N

(
1

p
− 1

2

)
<

N

2
− s1

that is when s1 < N
p < s2 + 2. If p > 2 the claim follows in the same way. �

The results for L in L p
(
R

N , dμm
)
are immediate consequence of those of L̃ in

L p(RN , dx), using the isometry Tk of Proposition 3.1 with k = −m/p and Theo-
rem 4.14. Note that the condition N + m > 0 is no longer required.

Corollary 4.15. Let m ∈ R, 1 < p < ∞ and let us suppose that the generation
conditions of Proposition 3.5 are satisfied, that is

(s1, s2 + 2) ∩ IN+m �= ∅,
N + m

p
∈ (s1, s2 + 2).

Then, T (·) has maximal regularity on L p(RN , dμm).

The following remark follows by combining the previous corollary with Proposi-
tion 3.5.

Remark 4.16. The Laplacian � generates a semigroup in L p(dμm) if and only if
−N < m < N (p − 1), that is when |x |m ∈ Ap. In such a case it has maximal
regularity.
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