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Abstract: The phonocardiogram (PCG) can be used as an affordable way to monitor heart condi-
tions. This study proposes the training and testing of several classifiers based on SVMs (support
vector machines), k-NN (k-Nearest Neighbor), and NNs (neural networks) to perform binary (“Nor-
mal”/”Pathologic”) and multiclass (“Normal”, “CAD” (coronary artery disease), “MVP” (mitral
valve prolapse), and “Benign” (benign murmurs)) classification of PCG signals, without heart sound
segmentation algorithms. Two datasets of 482 and 826 PCG signals from the Physionet/CinC 2016
dataset are used to train the binary and multiclass classifiers, respectively. Each PCG signal is pre-
processed, with spike removal, denoising, filtering, and normalization; afterward, it is divided into
5 s frames with a 1 s shift. Subsequently, a feature set is extracted from each frame to train and
test the binary and multiclass classifiers. Concerning the binary classification, the trained classi-
fiers yielded accuracies ranging from 92.4 to 98.7% on the test set, with memory occupations from
92.7 kB to 11.1 MB. Regarding the multiclass classification, the trained classifiers achieved accuracies
spanning from 95.3 to 98.6% on the test set, occupying a memory portion from 233 kB to 14.1 MB.
The NNs trained and tested in this work offer the best trade-off between performance and memory
occupation, whereas the trained k-NN models obtained the best performance at the cost of large
memory occupation (up to 14.1 MB). The classifiers’ performance slightly depends on the signal
quality, since a denoising step is performed during pre-processing. To this end, the signal-to-noise
ratio (SNR) was acquired before and after the denoising, indicating an improvement between 15 and
30 dB. The trained and tested models occupy relatively little memory, enabling their implementation
in resource-limited systems.

Keywords: classification; unsegmented phonocardiogram; machine learning; binary classifier; multiclass
classifier

1. Introduction

Traditional non-invasive diagnostic tools for cardiovascular diseases often involve
expensive equipment and specialized medical personnel, limiting their use to specialized
clinics and hospitals [1]. The phonocardiogram (PCG), in which the cardiac sound signals
are used to analyze the heart’s health, offers an affordable alternative to the traditional
non-invasive diagnostic tools. Various heart conditions, such as valvular heart disease,
congenital heart disease, heart failure, high blood pressure, and coronary artery diseases
(CAD), can be detected via the auscultation and interpretation of heart sounds [2]. The
typical process of PCG signal classification involves denoising, segmentation, and classi-
fication. It is worth observing that PCG signals are susceptible to various noise sources,
which can hamper proper signal segmentation and classification [3,4].
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The heart sound segmentation consists of identifying the fundamental heart sounds
(FHS), “S1” and “S2”, and additional sounds such as “S3”, “S4”, murmurs, and clicks, which
might be present but are harder to identify and often indicate pathological conditions [5,6].
“S1” occurs at the systole start, whereas “S2” occurs at the beginning of the diastole. Time–
frequency analysis is crucial for an in-depth analysis of PCG signals because they are not
stationary. Some ways to perform this time–frequency analysis include short-time Fourier
transform (STFT) and wavelet transform (WT) [6,7].

Several studies in the literature developed PCG binary classifiers to classify normal
and pathological PCG signals. P. Langley and A. Murray developed a threshold classifier for
the wavelet entropy without employing any segmentation or signal processing algorithms
using the Physionet/CinC 2016 dataset as the reference data [8]. This classifier achieved a
balanced accuracy equal to 77% (98% sensitivity, 58% specificity). Similarly, in a successive
study, P. Langley and A. Murray classified normal and pathological PCG signals in the
2016 Physionet/CinC Challenge dataset using MATLAB without heart sound segmentation
algorithms [9]. At first, the authors used threshold classifiers for the normalized spectral
amplitude and the wavelet entropy, achieving 70% (65% specificity, 75% sensitivity) and
76% balanced accuracy (54% specificity, 98% sensitivity), respectively. Then, the analysis
was repeated using minimal noise signal segments. In addition to the threshold classifiers
for each of the selected features, the authors utilized a classification tree utilizing all features
simultaneously, yielding a 79% balanced accuracy (80% specificity, 77% sensitivity). The
classification of normal and pathological PCG signals without segmentation algorithms
was also performed by P. Krishnan et al., who developed a one-dimensional convolutional
neural network (CNN) utilizing 1081 PCG recordings as the reference data [10]. This
classifier achieves an overall accuracy equal to 85.65% and an 85.74% balanced accuracy
(86.73% sensitivity, 84.75% specificity). Similarly, N.E. Singh-Miller et al. developed a
method to discern normal and pathological PCG signals using spectral features without
explicitly segmenting the “S1” and “S2” sounds. The authors employed a random forest
(RF) regressor for classification, which achieved an 81% balanced accuracy (76% sensitivity,
87% specificity) [11].

However, PCG segmentation algorithms enable the extraction of further PCG features
useful for normal/pathological heart sound classification. Hence, several studies in the
literature used segmentation algorithms to detect the “S1” and “S2” sounds. M.A. Goda and
P. Hajas utilized a support vector machine (SVM)-based classifier to differentiate between
normal and pathological PCG signals from the Physionet/CinC 2016 dataset (in particular,
1000 samples with a 1:1 ratio between normal and pathological signals) [12]. This classifier
obtained an 81.2% balanced accuracy (85.2% specificity, 77.2% sensitivity). In a similar
study, H. Tang et al. developed an SVM classifier to discern between normal and pathologi-
cal PCG signals utilizing a feature set of 515 features from nine domains, including time
interval, frequency spectrum, and entropy [13]. This classifier achieved an 88% balanced
accuracy (88% sensitivity, 87% specificity). Other studies in the literature developed PCG
classifiers based on machine learning (ML)/deep learning (DL) models with augmented
complexity and employing segmentation algorithms. T. Nilanon et al. utilized the Phys-
ioNet/CinC 2016 dataset to deploy a CNN-based binary model to classify 5-s segments of
normal and pathological PCG signals; the classifier achieved an 81.1% balanced accuracy
(77% sensitivity, 85.3% specificity) [14]. Similarly, M.N. Homsi and P. Warrick proposed an
ensemble of 20 classifiers to classify normal and pathological segmented PCG signals from
the Physionet/CinC 2016 dataset, focusing on outlier detection [15]. This method yielded a
balanced accuracy of 80.1% on the test set (79.6% sensitivity, 80.6% specificity). Likewise,
E. Kay and A. Agarwal proposed a classifier based on DropConnected neural networks
(NNs) trained on time–frequency and inter-beat features, an algorithm for classifying seg-
mented PCG signals from the Physionet/CinC 2016 dataset as normal or pathological [16].
This classifier achieves an 85.2% balanced accuracy on the test data. In a similar study, C.
Potes et al. developed a model combining a feature-based classifier using AdaBoost and
a deep learning-based classifier using a CNN trained and tested on the PhysioNet/CinC
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2016 dataset, achieving an 86.02% balanced accuracy, 92.24% sensitivity, and 77.81% speci-
ficity [17]. T. Liu et al. developed an SVM-based classifier to discern between normal PCG
signals and those with CAD, using heart sound segmentation algorithms, achieving a 90.9%
accuracy (87.8% sensitivity, 93.0% specificity, 90.4% balanced accuracy) using a custom
dataset with 991 samples [18]. The multiclass classification was performed by Y. Zeinali
and S.T.A. Niaki in reference [19]. The authors classified PCG signals from the PASCAL
dataset to detect the presence of the “S3” and “S4” sounds, each associated with specific
cardiovascular diseases. The study employed various machine learning algorithms, such as
SVMs, RF, and Gradient Boosting Classifier (GBC), to classify the sounds. The latter yielded
an 87.5% overall accuracy. S. B. Shuvo et al. developed a convolutional recurrent neural
network (CRNN)-based classifier to identify cardiovascular diseases using PCG signals,
which requires 7.96 MB [20]. This model achieved a 99.6% accuracy, 99.6% precision, 99.5%
sensitivity, and 99.6% F1-score on a PCG signal dataset available on GitHub. In contrast,
it yielded 86.6% accuracy, 93.3% precision, 99.5% sensitivity, and 99.6% F1-score on the
Physionet/CinC 2016 dataset related to the binary classification of normal and pathological
signals. Lastly, N. Baghel et al. developed a CNN-based classifier that uses heart sounds to
diagnose cardiac disorders automatically, yielding a 98.6% accuracy using 2000 samples
from data available on GitHub [21].

This paper presents the development of binary (Normal/Pathological) and multiclass
PCG classifiers to rapidly and massively detect and discern valvular heart diseases. The
latter discerns between various kinds of heart diseases, namely mitral valve prolapse
(MVP), CAD, and benign murmurs. Different ML/DL models, like SVMs, neural networks
(NNs), or k-Nearest Neighbor (k-NN), are trained and tested using datasets created from
the PhysioNet/CinC 2016, which contains recordings labeled by expert medical staff
of both normal and pathological PCG signals; in particular, two datasets were created
containing 482 (241 normal and 241 pathological) and 826 (287 normal, 287 CAD, 134 MVP,
118 murmurs) signals used for training and testing the binary and multiclass classifiers.
These signals are pre-processed by removing spikes, reducing noise, and normalization;
then, they are split into 5 s frames using a moving window with a 1 s shift, enabling
augmenting the number of observations used to train and test the classifiers. In this
way, binary and multiclass datasets, including 10104 and 13136 frames, respectively, are
gathered, randomly removing excess frames from each class, thus balancing the two
datasets. Subsequently, a set of features in various domains (i.e., time, frequency, statistical,
wavelet, and MFCC (Mel Frequency Cepstral Coefficient) domains) are extracted from each
PCG frame and used to train and test the classifiers. The resulting datasets are used to
train and test different binary and multiclass classifiers via the MATLAB Classification
Learner application. The test results demonstrated that k-NN classifiers obtain the best
performance for both binary and multiclass classification, reaching 98.7% accuracy and
F1-score. Nevertheless, these last classifiers feature a relatively high memory occupation
(up to 14.1 MB for multiclass classification). Instead, NNs are the best trade-off between
performance (up to 96.0% accuracy and F1-score) and memory requirements (up to 735 kB).
The resulting classifiers are suitable to be implemented in a resource-limited programmable
system. The main strengths of the proposed work include the following:

• The pre-processing chain of PCG signals reduces noise and normalizes signals, en-
abling performance not dependent on signal quality, making the classifiers practical
for real-world scenarios;

• No segmentation algorithms are employed in the feature engineering phase to identify
the heart sounds, such as “S1” and “S2”, since these algorithms are computationally
demanding and typically require additional information that cannot be derived directly
from PCG signals [22,23];

• Lightweight ML/DL models (e.g., SVMs, NNs, and k-NN) are considered, enabling
their implementation on resource-limited platforms [24];

• Only scalar features were selected to further limit the classifiers’ complexity;
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• The models occupy a small amount of memory, enabling the classifiers’ implementa-
tion on memory-limited platforms, making them suitable for edge computing-based
wearable devices or mobile healthcare applications, allowing for real-time monitoring
and diagnostics [1];

• Both binary and multiclass classification are performed, highlighting the classifier’s
versatility in different diagnostic scenarios.

The remainder of this article is organized as follows: Section 2 describes various
datasets containing PCG signals and the code developed in MATLAB R2021b. Section 3
highlights the main results of this research work, whereas Section 4 discusses the results
mentioned above. Lastly, Section 5 analyzes the strengths and main findings of the work.

2. Materials and Methods
2.1. Analysis of Open-Access PCG Signal Datasets

Below, the main open-access datasets containing PCG signals are described, namely
the PASCAL, the 2011 Catania Heart Sounds, and the Physionet/CinC 2016 datasets. The
criteria adopted for the dataset selection include the number and duration of signals in the
dataset and the presence of labeling of PCG signals by expert medical personnel, allowing
for the development of supervised classifiers.

The PASCAL (Pascal Classifying Heart Sound Challenge) dataset contains 859 PCG
recordings gathered from both the iStethoscope iOS application and hospital clinical trials
using a digital stethoscope, with durations ranging from 1 to 30 s [25]. The dataset is divided
into two sets: A and B. The first set consists of 176 heart sounds (23.58 min of recordings)
labeled into the categories “normal”, “breath”, “extra heart sound”, and “artifact”; the
second set contains 656 signals (a total of 71.64 min) labeled into three categories: “normal”,
“murmur”, and “extrasystole”.

Another widely used dataset is the 2011 Catania Heart Sounds (CTHS) dataset, which
comprises 412 PCG recordings acquired from 206 individuals while they were resting,
using a ThinkLabs Rhythm electronic stethoscope, with a sampling rate of 11.025 kHz and
16-bit resolution [26]. However, this dataset does not provide diagnoses of heart diseases.
A dataset that encompasses diagnoses of heart diseases is the PhysioNet/CinC 2016; this
dataset comprises recordings of heart sounds collected from both healthy subjects and those
with pathological conditions, such as MVP, mitral regurgitation (MR), aortic regurgitation
(AR), aortic stenosis (AS), or CAD. The recordings were collected in various environments
using clinical and nonclinical equipment, ranging in duration from a few seconds to several
minutes, and are divided into two subsets: a training set and a test set [27,28]. All PCG
signals in the dataset were resampled using a 2 kHz sampling rate and an antialiasing
filter and then converted to the .wav format. It is important to note that the dataset is
unbalanced, with a higher number of recordings classified as “normal” than as pathological.
The training set comprises six databases (labeled “training-“ followed by the alphabet
letters “a” to “f”) that contain a total of 3240 PCG signals acquired from 764 patients, with
a duration between 5 and 120 s. Each database’s file name starts with the same letter,
indicating the database to which it belongs, followed by a sequential random number. Also,
each database includes a specific subset of the cardiovascular diseases mentioned above.
Table 1 summarizes the contents of each database of the dataset’s training set.

The Physionet/CinC 2016 dataset was selected as the reference data for the classifiers
trained and tested in this research because it contains the most signals among the analyzed
datasets and diagnoses of the heart’s condition performed by expert medical personnel
(Table 1). Specifically, only a portion of the Physionet/CinC 2016 training set is used for the
binary and multiclass classifiers trained and tested in this work. Concerning the binary
classification, 482 signals (241 normal and 241 pathological) are randomly selected from the
“training-c”, “training-e”, and “training-f” sections. Similarly, for multiclass classification,
826 signals from the entire dataset are selected (normal (287), CAD (287), MVP (134), and
benign murmurs (118)), including as many “normal” signals as the maximum number of
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signals among the pathologic classes. In both cases, nearly balanced datasets are created to
optimize the training and testing of classifiers.

Table 1. Types of data in each database of the Physionet/CinC 2016 dataset’s training set.

Database PCG Signal Labels in the Dataset

“training-a” “Normal”, “MVP” (mitral valve prolapse), “AD” (Aortic Disease),
“MPC” (Miscellaneous Pathological Conditions)

“training-b” “Normal”, “CAD” (coronary artery disease)

“training-c” “Normal”, “MR” (Mitral Regurgitation), “AS”(Aortic Stenosis)

“training-d”
“Normal: NHC” (signals acquired from 19 subjects aged between 18

and 40), “Normal: MARS500”(signals acquired from 6 volunteer
astronauts), “Pathologic”

“training-e” “Normal”, “CAD”

“training-f” “Normal”, “Pathologic”

2.2. Pre-Processing, Feature Extraction, and Dataset Partition from the PCG Signals

This work involves the training and the testing of different classifiers, namely SVMs,
feed-forward NNs, and k-NN, to discern between normal and pathologic PCG signals
(binary classification) and to detect various kinds of heart diseases, such as benign mur-
murs, coronary artery disease, or mitral valve prolapse (multiclass classification). MATLAB
version 2021b (Mathworks Inc., Natick, MA, USA) was used to pre-process the PCG signals,
extract features, and create the training and test datasets to be used in the Classification
Learner application embedded in the MATLAB package for training and testing the dif-
ferent classifiers. Figure 1 depicts the high-level flowchart of the MATLAB code. The
following steps are performed sequentially:

• PCG signals are read;
• For each PCG signal, the following tasks are performed:

# Pre-processing to remove spurious spikes and reduce noise via a wavelet-based
denoising algorithm. Then, the signal is filtered and normalized;

# Division into 5 s frames with a 1 s shift. This operation enables the expansion of
the size of the feature dataset and consequently reduces the over-fitting risk;

# For each frame, the following tasks are carried out:
■ Feature extraction. Thirty-three scalar features are extracted from multiple

domains (i.e., time, frequency, statistical, wavelet, and MFCC domains).
More details on the extracted features are detailed in Section 2.4;

■ The extracted features are stored;
■ Features belonging to the same signal are annotated;

# The dataset obtained in the previous step is split according to the classes;
# The excess frames are randomly removed according to the minimum number of

frames across all classes;
# Each class dataset obtained in the previous step is partitioned into training (80%)

and test (20%) sets. In this way, the number of frames for each class is guaranteed
to be equal for all classes;

# Each training and test set is combined.

In addition to the methodology used to create the balanced training and test sets after
the signals’ framing (with or without overlap), to consider a realistic scenario of using the
trained models for classifying the PCG signal of a new patient under examination, a second
strategy was implemented to create the training and test sets. First, the 241 normal and
241 pathological signals (total of 482 labeled signals) that make up the dataset were ran-
domly distributed proportionally in the training and test sets (20% and 80%, respectively);
then, the framing was carried out with a frame duration of 5 s and overlap of 0 or 4 s. In this
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way, differently from the methodology used previously, frames of the same signal all belong
to the training or test set without the possibility that they can be included in both. After the
framing step, the excess frames were randomly eliminated in both the training and test sets
to obtain a perfect balance between normal and pathological frames. In summary, in the
case of 0 s overlap in the framing step, the training set consists of 2012 frames (1006 normal
and 1006 pathologic) and the test set of 504 frames (252 for both classes). In Section 3, the
results related to the classifiers’ performance using the datasets thus obtained are reported
and then compared with those achieved with the first method implemented to create the
training and test sets.
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Subsequently, the training and test datasets in “.xlsx” format were loaded into the
MATLAB Classification Learner application. The training dataset was imported using
the “cross-validation” methodology, which divided the dataset into 10 equal parts for
validation. According to the previous description, all frames derived from a signal were
marked with the same signal label after assessing that the entire signal shows the typical
features related to the annotated pathology. This approach is justified, considering the
cardiac pathologies evaluated are valvular; therefore, it is presumable that the dysfunction
will recur in each cardiac cycle. Various machine learning models, including different types
of SVMs, k-NN, and NNs, were trained using the Classification Learner application. After
training, each model was tested using the test dataset obtained before. The datasets used
to train and test the PCG classifiers have been attached in the Supplementary Materials
(File S1).

2.3. PCG Signal Pre-Processing

As described in the previous section, the PCG signals were pre-processed to make
them suitable for the following feature extraction; in detail, spike removal and denoising
algorithms were applied to PCG signals. The spurious spike removal algorithm applied to
the PCG signals is the one proposed by Schmidt et al. [22], and it is outlined as follows:

• The PCG signal is divided into 0.5 s frames;
• The maximum absolute amplitude (MAA) is determined in each frame;
• If at least one MAA is greater than thrice the median of all recorded MAAs, the

following steps are initiated; otherwise, the spike removal algorithm ends:

# Select the frame with the largest MAA;
# Obtain the location of the MAA in the selected frame;
# Define the beginning and the end of the spurious spike as the last zero-crossing

point preceding the MAA and the first zero-crossing point after the MAA;
# Set the points corresponding to the identified interval to zero;
# Repeat until the spurious spikes are removed.

The denoising algorithm performs the wavelet decomposition up to a certain level and
applies a threshold function for all the detail coefficients. Afterward, for each decomposition
level, the approximation coefficients of the prior level are obtained by performing the
inverse discrete wavelet transform using the current level’s approximation coefficients and
detail coefficients with the application of the threshold function. This process is repeated
until the signal is reconstructed with reduced noise. In particular, an optimization was
performed regarding the optimal wavelet denoising parameters (wavelet typology, order,
and level) (Table 2). The metric used to evaluate the different tested configurations is
the average SNR between the input and output to the denoising block calculated on the
entire dataset. According to the obtained results, the selected parameters for the denoising
algorithm are as follows: fifth-order Daubechies’ wavelet (db5), universal threshold (i.e.,√

2 ln(signal length) ), level-dependent noise estimate, and soft thresholding.
After the denoising step, a fourth-order Butterworth bandpass filter with cutoff fre-

quencies equal to 25 and 450 Hz is applied to emphasize the signal in the band of interest.
In MATLAB, the filter is applied to the signal through the filtfilt function, which performs
zero-phase filtering on the target signal. The combined use of the Butterworth filter and the
denoising block enhances the performances in terms of overall accuracy in the binary classi-
fication compared to the case where such blocks are not used; this consideration is justified,
as the signal-to-noise ratio increases by between 15 and 30 dB when the blocks are used,
resulting in less noisy signals, as detailed further in Section 4. However, the Butterworth
filter is not applied in the multiclass classifiers since they must also detect benign murmurs,
which can have frequency components up to 1 kHz. The last pre-processing step consists of
normalizing the filtered signal with respect to its maximum amplitude. Then, each signal
is split into frames with a 5 s moving window with a 1 s shift, enabling the extension of
the dataset. In detail, two balanced datasets constituted by 10,104 and 13,136 frames are
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created for binary and multiclass classification by randomly removing the excess frames
for each class.

Table 2. Optimization of the wavelet denoising parameters.

Wavelet Order Level
——

SNR [dB]

Daubechies (dB) 4 6 21.6
Daubechies (dB) 4 8 20.5
Daubechies (dB) 4 10 20.3
Daubechies (dB) 5 6 23.4
Daubechies (dB) 5 8 23.1
Daubechies (dB) 5 10 22.4

Symlet (sym) 6 6 17.6
Symlet (sym) 6 8 17.4
Symlet (sym) 6 10 16.9
Symlet (sym) 10 6 15.4
Symlet (sym) 10 8 15.7
Symlet (sym) 10 10 14.9

Figure 2 shows an example of the first 5 s of normal and pathologic PCG signals before
and after the pre-processing.
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Figure 2. Normal and pathologic signals without and after pre-processing. (a) First 5 s of a normal
signal without pre-processing. (b) First 5 s of a normal signal after pre-processing. (c,d): First 5 s of a
pathologic signal without and after pre-processing.
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An analysis was carried out regarding the gender and age of the patients regarding
the frame dataset generated for the binary classifiers. Out of 10,104 frames, 4779 frames
(47.3%) are from women, while 5325 frames (52.7%) are from men. Furthermore, 30.5% of
the total frames (3081 frames) are from patients aged less than or equal to 25 years; 16.0%
are from patients aged between 26 and 50 (1620 frames), and 53.5% are from patients aged
over 50.

2.4. Feature Selection and Extraction

Scalar features were chosen to reduce the classifiers’ complexity; furthermore, no
segmentation algorithm to identify the “S1” and “S2” sounds was used to select the
features since they are computationally demanding (e.g., the segmentation algorithms
are often based on additional machine or deep learning models) and typically require
other information that cannot be derived directly from the PCG signal, such as the R-
peak’s duration, which is derived from the electrocardiogram (ECG) [23]. A feature set
comprises 36 scalar features belonging to the time, frequency, statistical, wavelet, and
MFCC domains. They were selected considering signal features, which carry significant
information about the structure and characteristics of the signal, which may be sensitive
to signal changes induced by cardiac pathologies. In particular, the wavelet entropies
calculated on a 4-level decomposition were included among the selected features, allowing
the signal’s complexity to be quantified in detail. These features can be particularly useful
for diagnosing heart disease, where the complexity of the signal can provide clues to the
presence of abnormalities. Using wavelet decomposition, it is possible to analyze the
signal at various levels of detail, obtaining a complete view of its frequency and temporal
characteristics [29]. Such features are extracted from each frame to constitute the dataset
used to train and test the classifiers. The extracted features, their definitions, and their
respective domains are summarized in Table 3.

Table 3. Extracted features and their respective domains.

Domain Extracted Feature Definition

Time

Signal (Shannon) entropy −∑N
i=1 p(xi)(p(xi)), where p(xi) represents the occurrence

probability of each signal component, and N is the signal length.

Heart rate
The heart cycle duration is the time from lag zero to the highest
peak within 500–2000 ms in the signal’s homomorphic envelope
autocorrelation [22]. The heart rate is obtained by dividing this
duration by 60. The systolic interval is the time between the lag
zero and highest peak occurring between 200 ms and half of the

heart cycle [22].
Systolic time interval

Frequency

Maximum power spectrum
amplitude

max|DFT(x)|2; in this work the mono-lateral DFT (discrete Fourier
transform) is considered.

Dominant frequency argmax f |DFT(x)|2

Maximum spectrum ratio The ratio between the maximum power spectrum and the sum of
the overall power spectrum

Normalized spectral entropy
The normalized spectral entropy is calculated by dividing the

power spectrum by its cumulative sum, determining the Shannon
entropy and dividing it by log2N.
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Table 3. Cont.

Domain Extracted Feature Definition

Statistical

Mean x = 1
N

N
∑

i=1
xi

Median The 50th percentile (second quartile)

Standard deviation (SD) σ =

√
1

N−1

N
∑

i=1
(xi − x)2

Mean absolute deviation (MAD) 1
N

N
∑

i=1
|xi − x|

First quartile (Q1) The 25th percentile

Third quartile (Q3) The 75th percentile

Interquartile range (IQR) Q3 − Q1

Skewness N
(N − 1)(N − 2)

N
∑

i=1

(
xi − x

σ

)3

Kurtosis N(N + 1)
(N − 1)(N − 2)(N − 3)

N
∑

i=1

(
xi − x

σ

)4
− N(N − 1)2

(N − 2)(N − 3)

Wavelet

Wavelet entropy for the
approximation coefficients at level 4

The wavelet entropy is obtained by computing the Shannon
entropy of the normalized energy of wavelet coefficients at each

decomposition level.

Wavelet entropy for the detail
coefficients at level 4

Wavelet entropy for the detail
coefficients at level 3

Wavelet entropy for the detail
coefficients at level 2

MFCCs

1st of the MFCCs

MFCCs are extracted as follows: The signal is windowed using the
Hamming window, followed by the fast Fourier transform (FFT).
The resulting spectrum is filtered through Mel-scale triangular

filters, with the relation between the Mel scale and frequency given

by Mel( f ) = 1127 log
(

1 + f
700

)
. Finally, the discrete cosine

transform (DCT) is performed on the Mel spectrogram to obtain the
MFCCs [30].

2nd of the MFCCs

3rd of the MFCCs

4th of the MFCCs

5th of the MFCCs

6th of the MFCCs

7th of the MFCCs

8th of the MFCCs

9th of the MFCCs

10th of the MFCCs

11th of the MFCCs

12th of the MFCCs

13th of the MFCCs

2.5. Classifier Performance Evaluation Metrics

Regarding the classifiers considered, attention was paid to models suitable for im-
plementation on embedded systems. In detail, SVMs, k-NN, and NNs are often used for
embedded applications, given their simplicity, efficiency in classification, robustness, and
versatility. Neural networks can guarantee excellent performance, quick and efficient infer-
ences, and the ability to exploit models pre-trained on more powerful hardware and export
them to embedded devices [31–33]. Furthermore, multiple optimized frameworks (such
as TensorFlow Lite, ONNX Runtime, etc.) facilitate their implementation on embedded
devices, making the most of the available hardware resources. Multiple configurations
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and settings were considered relative to the structures and parameters, as described in
Section 3.

The metrics to evaluate the performance of the trained classifiers are the following:
overall accuracy, sensitivity, specificity, precision, balanced accuracy, and F1-score. The true
positives (TPs) are the correctly predicted positive classes, the false positives (FPs) are the
incorrectly predicted positive classes, the true negatives (TNs) are the correctly predicted
negative classes, and lastly, the false negatives (FNs) represent the incorrectly predicted
negative classes. The overall accuracy (Acc) is obtained as in Equation (1):

Acc =
TP + TN

TP + TN + FP + FN
(1)

The sensitivity (Se), the specificity (Sp), and the precision (P) are obtained as in
Equations (2)–(4):

Se =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

P =
TP

TP + FP
(4)

The balanced accuracy (BA) and the F1-score (F1) can be derived from the sensitivity,
specificity, and precision as in Equations (5) and (6):

BA =
Se + Sp

2
(5)

F1 =
2 PSe
P + Se

(6)

For the multiclass classification, given a confusion matrix C, the overall accuracy can
be computed by taking the confusion matrix’s trace and dividing it by the sum of each
element of the matrix as in Equation (7):

Acc =
∑M

i=1 Cii

∑M
i=1 ∑M

j=1 Cij
=

tr(C)

∑M
i=1 ∑M

j=1 Cij
=

tr(C)

tr(C) + ∑M
i=1 ∑M

j=1,i ̸=j Cij
. (7)

In Equation (7), Cii represents the ith element on the confusion matrix’s diagonal, Cij
is the element of the confusion matrix on the ith row and the jth column, tr(C) is the trace of
the confusion matrix C, and M is the number of classes. The micro-averaging approach was
adopted to calculate the sensitivity, specificity, precision, balanced accuracy, and F1-score.
In this approach, the sum of TP, TN, FP, and FN across all classes is considered in the
definition of the evaluation metrics as described in Equations (8)–(10):

Se =
TP

TP + FN
=

∑M
k=1 TPk

∑M
k=1 TPk + ∑M

k=1 FNk
. (8)

Sp =
TN

TN + FP
=

∑M
k=1 TNk

∑M
k=1 TNk + ∑M

k=1 FPk
. (9)

P =
TP

TP + FP
=

∑M
k=1 TPk

∑M
k=1 TPk + ∑M

k=1 FPk
. (10)

In Equations (8)–(10), M represents the total number of classes. Once the sensitivity,
specificity, and precision are computed, the balanced accuracy and the F1-score can be
computed as defined in Equations (5) and (6).
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2.6. Description of the Mode of Operation of the Employed Machine Learning Models

This section aims to briefly describe the mode of operation employed for the PCG
signal classifications, i.e., SVMs, k-NN, and NNs.

2.6.1. Support Vector Machines

The SVM positions the feature vectors in a space with a known dimension, drawing a
hyperplane with the same dimension to categorize the different classes. This hyperplane
constitutes the decision boundary for the model. The SVM aims to maximize the margin
(i.e., the distance between the nearest samples of two classes along the decision boundary)
to enhance model generalization on new samples. Variants of the model include linear
SVMs, which employ a hyperplane, and kernel-based SVMs, which work well with datasets
not separable by a hyperplane in the original feature space, which is transformed into a
higher dimensional space.

2.6.2. k-Nearest Neighbors

The k-NN is a non-parametric model that allows the retention of all its training
samples in memory. The classification identifies the k closest samples in the training set
using several distance functions. The choice of k and the distance function depends on
the specific application. Popular choices for the distance function include the Lp norm
(Minkowski’s distance), the Hamming distance, the cosine similarity, and other functions
such as Mahalanobis’ distance or Chebychev’s distance.

2.6.3. Neural Networks

Lastly, NNs are made of interconnected units (also called nodes or neurons), where
each connection has a numeric weight, which determines the strength and the direction of
the signal propagation among different nodes. The main categories of NNs are feed-forward
NNs, where the connections between nodes occur only in one direction, and recurrent NNs,
which can process their outputs as inputs. In particular, the nodes of feed-forward NNs are
typically organized in layers so that each node in the current layer receives its input only
from the nodes of the immediately preceding layer. These feed-forward NNs can be further
categorized into single-layer and multi-layer networks.

3. Results

Table 4 shows the trained models that achieved the best performance on the test set for
the binary classification (with “Normal” and “Pathologic” classes), highlighting the models’
parameters. A k-NN classifier (named k-NN1-B) outperforms all the other trained models,
achieving a 98.7% accuracy. Following this, another k-NN classifier (named k-NN2-B)
displays a slightly lower overall accuracy on the test set (96.5%). The third-best-performing
trained model is a three-layer feed-forward NN (named NN1-B), which reached 96.0%
accuracy. Another NN model (called NN2-B) yields a similar performance compared to
the previous one (95.9% accuracy). Another k-NN classifier (named k-NN3-B) performs
well on the test set, obtaining 95.5% accuracy, followed by a monolayer feed-forward NN
(namely, NN3-B) (93.4% accuracy). Lastly, an SVM (“SVM1-B”) provides 93.3% accuracy.
Furthermore, Table 4 reports the precision, sensitivity, specificity, F1-score, and BA of the
best-performing models for binary classification; the obtained results are then discussed in
Section 4.

Figure 3 shows the confusion matrices and ROC (Receiver Operating Characteristics)
curves of the trained models for binary classifications.
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Table 4. Performance of the best-performing models for the binary classification.

Model Accuracy
[%]

Precision
[%]

Sensitivity
[%]

Specificity
[%]

F1-Score
[%]

BA
[%] Parameters

k-NN1-B 98.7 98.7 98.3 99.1 98.7 98.7

• Number of neighbors: 1
• Distance metric: city block
• Distance weight: inverse
• Standardized data: yes

k-NN2-B 96.5 96.9 96.0 96.9 96.4 96.5

• Number of neighbors: 1
• Distance metric: Euclidean block
• Distance weight: equal
• Standardized data: yes

NN1-B 96.0 96.8 95.0 96.8 95.9 95.9

• Trilayered: (200, 100, 50) neurons
• Activation: ReLU
• λ = 4.1279 × 10−7

• Iteration limit: 1000
• Standardized data: yes

NN2-B 95.9 96.6 95.4 96.6 96.0 96.0

• Trilayered: (100, 50, 25) neurons
• Activation: ReLU
• λ = 4.1279 × 10−7

• Iteration limit: 1000
• Standardized data: yes

k-NN3-B 95.5 95.7 95.3 95.7 95.5 95.5

• Number of neighbors: 10
• Distance metric: Euclidean
• Distance weight: squared inverse
• Standardized data: yes

NN3-B 93.4 94.3 92.3 94.5 93.3 93.4

• Single layer: 100 neurons
• Activation: ReLU
• λ = 0
• Iteration limit: 1000
• Standardized data: yes

SVM1-B 93.3 88.8 93.0 88.3 90.9 90.7

• Kernel function: cubic
• Kernel scale: automatic
• Box constraint level: 1
• Standardized data: yes
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Figure 3. Confusion matrices and ROC curves for best-performing binary PCG classifiers: k-NN1-B
(a,b), k-NN2-B (c,d), NN1-B (e,f), NN2-B (g,h), k-NN3-B (i,j), NN3-B (k,l), and SVM1-B (m,n); the
color of each cell of the confusion matrices is representative of the relative numerical value reported;
the different colors, associated with the numerical values from the smallest to the highest, can be set in
MATLAB when the confusion matrices are printed (for example, from white to dark blue in this case).
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Similarly, Table 5 reports the best-performing models trained for multiclass classifi-
cation. Also in this case, a k-NN classifier (named k-NN1-M), with one neighbor and city
block distance, outperforms all other trained models, yielding a 98.6% accuracy on the
test set. Following this, another k-NN classifier (named k-NN2-M) achieves slightly lower
accuracy than the previous one (96.9%). Also, a trilayered feed-forward NN (called NN1-
M) with (200, 100, 50) neurons reaches good performance (96.0% accuracy), followed by
another trilayered feed-forward NN classifier (named NN2-M) with (200, 50, 50) neurons,
which achieves similar accuracy (95.8%). The next-best-performing trained model is a k-NN
classifier (named k-NN3-M) with 10 neighbors and Euclidean distance, which yielded a
95.3% accuracy. Following this, a trilayered feed-forward NN (called NN3-M) with (100,
50, 25) neurons obtains 94.7% accuracy. Finally, an SVM model (called SVM1-M) using a
cubic kernel function and a single-level block constraint achieves 94.5% accuracy. Moreover,
Table 5 reports the precision, sensitivity, specificity, F1-score, and BA of the best-performing
models for the multiclass classification, which are then discussed in Section 4. Figure 4
depicts the confusion matrices of the best-performing multiclass classifiers. The binary and
multiclass models exported from MATLAB Classification Learner have been attached to
the Supplementary Materials (File S2).
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Figure 4. Confusion matrices relative to the best-performing models on the test dataset for the
multiclass case: k-NN1-M (a), k-NN2-M (b), NN1-M (c), NN2-M (d), k-NN3-M (e), NN3-M (f), and
SVM1-M (g); the color of each cell of the confusion matrices is representative of the relative numerical
value reported; the different colors, associated with the numerical values from the smallest to the
highest, can be set in MATLAB when the confusion matrices are printed (for example, from white to
dark blue in this case). Empty white cells in the confusion matrices mean a number of specific cases
equal to zero.

The implemented framing operation with overlap was fundamental for improving
the performance of the developed classifiers since they were trained and tested on wider
datasets compared to the case without frame overlap. Indeed, in our previous tests in-
volving a smaller dataset for binary classification (2516 frames, equal to about ¼ of the
current dataset) obtained by non-overlapping framing with a 5 s window, the best classifier
was a k-NN model, reaching 92.9% accuracy (5.8% less than the previous case with a
larger dataset). Furthermore, the training and test sets were created by dividing the signals
according to the ratio 80%/20% and then framing them using a 5 s window and 1 s time
shift (i.e., 4 s overlap). The related balanced training and test sets were constituted by
8084 and 2020 frames (10,104 in total), respectively, as in the dataset obtained by the first
method described in Section 2, but without frames relating to the same signal belonging
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to both training and test sets. Using this methodology, the best-performing classifier was
still a k-NN, achieving a 96.4% accuracy on the test set, 2.3% lower than the best classifier
obtained using the dataset without imposing the partition of training and test sets at the
signal level. In summary, a mean performance reduction of 2.4–2.5% in terms of accuracy
was verified for all tested classifiers reported in Table 4, keeping the same ranking obtained
with the previous dataset.

Table 5. Performance of the best-performing models for the multiclass classification.

Model Accuracy
[%]

Precision
[%]

Sensitivity
[%]

Specificity
[%]

F1-Score
[%]

BA
[%] Parameters

k-NN1-M 98.6 98.6 98.6 99.5 98.6 99.1

• Number of neighbors: 1
• Distance metric: city block
• Distance: squared inverse
• Standardized data: yes

k-NN2-M 96.9 96.9 96.9 99.0 96.9 98.0

• Number of neighbors: 1
• Distance metric: Euclidean block
• Distance weight: equal
• Standardized data: yes

NN1-M 96.0 96.0 96.0 98.7 96.0 97.4

• Trilayered: (200, 100, 50) neurons
• Activation: ReLU
• λ = 1.612 × 10−7

• Iteration limit: 1000
• Standardized data: yes

NN2-M 95.8 95.9 95.9 98.6 95.9 97.3

• Trilayered: (200, 50, 50) neurons
• Activation: ReLU
• λ = 0
• Iteration limit: 1000
• Standardized data: yes

k-NN3-M 95.3 95.3 95.3 98.4 95.3 96.9

• Number of neighbors: 10
• Distance metric: Euclidean
• Distance weight: squared inverse
• Standardized data: yes

NN3-M 94.7 94.7 94.7 98.2 94.7 96.5

• Trilayered: (100, 50, 25) neurons
• Activation: ReLU
• λ = 1.612 × 10−7

• Iteration limit: 1000
• Standardized data: yes

SVM1-M 94.5 94.5 94.5 98.2 94.5 96.4

• Kernel function: cubic
• Kernel scale: automatic
• Box constraint level: 1
• Standardized data: yes

Given the procedure used to create the training and test datasets after the signals’
framing, however, partially overlapping frames or non-overlapping frames related to the
same original signal might be present in the training and test sets, leading to overestimation
of the classifiers’ performance. For this reason, as described in Section 2, we created new
balanced training and test datasets, imposing that frames belonging to the same signal
cannot be present in both the training and test sets by initially splitting the signals into
the two above-mentioned datasets and then performing the framing. Using this dataset
for binary classification, for example in the case of no time overlap between frames, the
best-performing classifier, namely a k-NN, achieves 90.5% accuracy, 2.4% lower than the
best classifier tested with the previous dataset (as reported above).

4. Discussion

From the results presented in Section 3, the trained binary classifiers achieve accuracies
ranging from 93.3% to 98.7%, which the k-NN1-B model obtains. Tables 4 and 5 report
the performance of the binary and multiclass classifiers in terms of sensitivity, specificity,
precision, balanced accuracy, and F1-score. The reported binary and multiclass classifiers
perform excellently compared to similar work reported in the scientific literature, as dis-
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cussed later. These results can be justified by the careful work carried out to construct
wide and balanced datasets, exploiting data augmentation techniques. In addition, the
parameter optimization of the trained models was a fundamental step in improving their
performance. The potential of data augmentation techniques to extend the size of a dataset
for training models for the classification of PCG signals has already been demonstrated
in [21], allowing the performance of classification models to be improved.

Regarding binary classification, the best-performing classifier is the k-NN1-B model,
achieving 98.7% accuracy, precision, F1-score, and balanced accuracy, 98.3 % sensitivity,
and 99.1% specificity,. The k-NN algorithm lends itself well to classification problems,
demonstrating simplicity and efficiency. Recent studies and practical applications have
shown that k-NN can outperform other classification algorithms for PCG classification in
specific scenarios [34,35]. Indeed, PCG signals, when transformed into features such as
MFCC, might create a feature space where the decision boundaries are relatively simple [35].
Furthermore, k-NN makes decisions based on the local neighborhood of data points, which
can be effective if similar PCG signals cluster together in the feature space [34]. In addition,
neural networks demonstrated high performance, reaching 96.0% (NN1-B) and 95.9%
(NN2-B) accuracy in binary classification. Indeed, NNs can model complex, non-linear
relationships in the data, making them suitable for distinguishing between normal and
pathological heart sounds that may have subtle differences [36].

A comparison of the best-performing binary classifiers in terms of the area under the
curve (AUC), extracted from the ROC curves in Figure 3, and memory occupation of models
exported from the MATLAB Classification Learner is reported in Table 6. Specifically, the
AUCs of all the considered models exceed 0.96, reaching 0.99 for the best-performing k-NN
(k-NN1-B and k-NN3-B) and NN (NN1-B and NN2-B) classifiers, indicating the classifiers’
excellent performance. On the other hand, memory occupation is another important
characteristic to be considered for the considered models since they should be implemented
on resource-limited platforms. The trained binary classifiers occupy from 92.7 kB (NN3-B)
to 11.1 MB (k-NN1-B). In detail, although the k-NN1-B model offers the best performance,
it features the largest memory occupation, which is, nevertheless, compatible with its
implementation on traditional prototyping platforms (e.g., Raspberry Pi4 (Raspberry Pi Inc.,
Cambridge, UK), NVIDIA Jetson Nano (NVIDIA Inc., Santa Clara, CA, USA), BeagleBone
Black (BeagleBoard Inc., Mansfield, TX, USA), etc.) (Table 6). However, it is necessary to
evaluate the performance of the classifiers in relation to the memory occupation to establish
the best trade-off between the two characteristics. To this end, the trained binary classifier
that offers the best trade-off between performance and memory occupation is NN2-B, which
achieves 95.9% accuracy and occupies only 232 kB of memory, enabling its implementation
on microcontrollers, like nRF52840 (manufactured by Nordic Semiconductors, Trondheim,
Norway), STM32F205 (manufactured by STMicroelectronics, Geneva, Switzerland), or
MAX32570 (manufactured by Analog Devices, Norwood, MA, USA).

Table 6. Summary table with the AUC and the memory occupation of the best-performing models
for binary PCG classification.

Model AUC Memory Occupation

k-NN1-B 0.99 11.1 MB
k-NN2-B 0.96 5.67 MB
NN1-B 0.99 734 kB
NN2-B 0.99 232 kB

k-NN3-B 0.99 5.67 MB
NN3-B 0.98 92.7 kB

SVM1-B 0.98 1.26 kB

Relative to the multiclass classification, the trained and test classifiers reach an accuracy
ranging from 94.5% to 98.6%, suggesting the achievement of excellent performances on the
set of classifiers considered. Similarly to the binary classification, the best performance in
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terms of accuracy is achieved by a k-NN classifier (k-NN1-M), yielding a 98.6% accuracy.
Furthermore, the k-NN1-M model provides the best performance from the point of view
of the other metrics (98.6% precision, 98.6% sensitivity, 99.5% specificity, 98.6% F1-score,
and 99.1% BA). The reasons for the superior performance of the k-NN algorithm compared
to other algorithms have already been explained at the beginning of this section. Also,
the non-parametric nature of the k-NN is beneficial in this case, as it does not assume
any particular underlying data distribution. This observation can be helpful when the
relationship between features and labels is complex and not easily modeled by parametric
methods. Similarly to the binary case, even in multiclass classification, the neural networks
(NN1-M and NN2-M) obtain excellent performances (96.0% and 95.8% accuracy), close to
those obtained by the k-NN1-B algorithm, in agreement with their potential as previously
described.

Table 7 below summarizes the AUCs for all classes and the memory occupation of
the best-performing trained multiclass models. From the AUCs’ perspective, all multiclass
classifiers obtain a one-vs.-all (OvA) AUC greater than or equal to 0.98 across the different
classes, indicating a very high ability to rank the classes correctly. The trained multiclass
models’ memory occupation spans from 233 kB (NN3-M) to 14.1 MB (k-NN1-M). As for the
binary classification’s case, two k-NN-based classifiers (k-NN1-M and k-NN2-M) obtain
the best overall performance; however, these models occupy the biggest portion of memory
compared to other trained multiclass models (14.1 and 7.19 MB). Still, all the trained
multiclass classifiers can be implemented on the same prototyping platforms reported
for the binary case (i.e., NVIDIA Jetson Nano, Raspberry Pi 4, and BeagleBone Black).
The NN2-M classifier balances performance (95.8% accuracy) and memory occupation
(453 kB), allowing for its implementation on microcontroller-based systems such as the
already mentioned nRF52840, STM32F205, or MAX32570, as well as on devices based on
the STM32U58 (STMicroelectronics, Geneva, Switzerland) microcontroller.

Table 7. Summary table with the AUCs for each class and the memory occupation of the tested
multiclass classifiers.

Model AUC Memory Occupation

k-NN1-M 1.00 (Benign), 0.99 (CAD),
0.99 (MVP), 0.99 (Normal) 14.1 MB

k-NN2-M 0.99 (Benign), 0.98 (CAD),
0.98 (MVP), 0.98 (Normal) 7.19 MB

NN1-M 0.99 (Benign), 1.00 (CAD),
0.99 (MVP), 1.00 (Normal) 735 kB

NN2-M 0.99 (Benign), 1.00 (CAD),
0.99 (MVP), 1.00 (Normal) 453 kB

k-NN3-M 1.00 (Benign), 1.00 (CAD),
1.00 (MVP), 0.99 (Normal) 7.19 MB

NN3-M 0.99 (Benign), 1.00 (CAD),
0.99 (MVP), 1.00 (Normal) 233 kB

SVM1-M 0.99 (Benign), 1.00 (CAD),
0.98 (MVP), 1.00 (Normal) 2.82 MB

As reported in Section 2, a second method was implemented to build the dataset,
imposing that frames related to the same signal cannot belong both to training and test
sets. This choice was evaluated to determine the classifiers’ performance in a more realistic
scenario where the signals to be classified are different from those used for the training. The
two methods, equally used in the scientific literature for dataset creation, were implemented
and tested, and the corresponding classifiers’ performance was compared in Section 3.
Considering a broad dataset (10,104 frames), the second method led to a mean performance
reduction of 2.4–2.5% in terms of accuracy for all the tested classifiers while maintaining
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the same rank of the classifiers’ performance. Testing both the dataset-creation methods
can be considered an added value for the proposed research work, in which we tested and
compared the performance of the different classifiers using both methods, providing an
indication of how much the performance decreases on average when the second method is
used.

Below, Table 8 shows a comparative analysis between classifiers reported in this work
and those analyzed in the literature. The main comparison metrics are the overall accuracy,
sensitivity, specificity, balanced accuracy, use of heart sound segmentation algorithms,
used dataset, employed pre-processing, and whether binary or multiclass classification is
performed.

The classifiers trained and tested in this work are computationally simple (e.g., SVMs,
feed-forward NNs, and k-NN) and show a good balance between performance and com-
plexity since satisfying metrics are achieved. Other classifiers in the literature that achieved
similar performance either use segmentation algorithms, more advanced classification
models, or both. This result implies that those models are more resource-intensive than
those proposed in this work. For example, P. Krishnan et al. [10] employed a CNN-based
classifier, and H. Tang et al. and T. Liu et al. [13,18] used the segmentation algorithm pre-
sented in [23], which requires state sequences computed from parameters derived from the
ECG signals, such as the R-peak duration and the T wave end time. Moreover, this segmen-
tation algorithm involves logistic regression to estimate the probability of emission and a
modified version of the Viterbi algorithm to decode the most likely state sequence. C. Potes
et al. [17] employed an AdaBoost and CNN-based classifier using the same segmentation
algorithm. In the multiclass case, Y. Zeinali et al. [19] used complex models (i.e., GBC) and
segmentation algorithms (i.e., clustering algorithms to identify “S3” and “S4”). Although
the classifier proposed by S.B. Shuvo et al. achieves slightly higher performance than our
NN2-M (3.8% higher than NN2-M) over a GitHub dataset, it is based on a more complex
model (CNN vs. feed-forward NN) and occupies more memory (7.96 MB) than the NN2-M
model (435 kB) [20]. All the trained and tested classifiers can be implemented on edge
computing wearable devices based on resource-limited platforms such as the Raspberry
Pi 4 or the NVIDIA Jetson Nano. These devices running the classifiers developed in this
research allow for real-time monitoring and diagnostics of the heart’s condition. In addition,
all developed NNs can be implemented on microcontroller-based systems (e.g., STM32F205
or nRF52840), allowing for rapid deployment and scalability of heart diagnostic wearable
devices.

Table 8. Comparative analysis between the classifiers proposed in the literature and the ones trained
and tested in this work.

Reference Classifier
Type Acc [%] Se

[%]
Sp
[%]

BA
[%]

Heart Sound
Segmentation

Algorithms

Dataset Used for
Classifiers’ Training Pre-Processing Binary/Multiclass

Classification

P. Langley
et al. [8]

Threshold
classifier N.A. (*) 98 54 77 No Physionet/CinC 2016 Only the first 5 s of

signals considered
Binary

(Normal/Pathological)

P. Langley
et al. [9]

Classification
tree N.A. (*) 77 80 79 No Physionet/CinC 2016 Reduced noise signal

segments considered
Binary

(Normal/Pathological)

P.
Krishnan
et al. [10]

CNN 85.65 86.73 84.75 85.74 No Physionet/CinC 2016
Resampling, signal

division in 5 s frames,
Savitzky–Golay filter

Binary
(Normal/Pathological)

N. Singh-
Miller et al.

[11]
RF N.A. (*) 76 87 81 No Physionet/CinC 2016 N.A. (*) Binary

(Normal/Pathological)

M.A.
Goda et al.

[12]
SVM N.A. (*) 77.2 85.2 81.2 Yes

1000 samples (1:1
Normal/Pathological)
from Physionet/CinC

2016 d

Resampling and
bandpass filtering

Binary
(Normal/Pathological)

H. Tang
et al.
[13]

SVM N.A. (*) 88 87 88 Yes Physionet/CinC 2016
Highpass filtering, spike

removal, and
normalization

Binary
(Normal/Pathological)
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Table 8. Cont.

Reference Classifier
Type Acc [%] Se

[%]
Sp
[%]

BA
[%]

Heart Sound
Segmentation

Algorithms

Dataset Used for
Classifiers’ Training Pre-Processing Binary/Multiclass

Classification

T. Nilanon
et al. [14] CNN N.A. (*) 77 85.3 81.1 N.A. (*) Physionet/CinC 2016 Division of the signal

into 5 s frames
Binary

(Normal/Pathological)

M. Homsi
et al.
[15]

Ensemble
Classifier N.A. (*) 79.60 80.60 80.10 Yes Physionet/CinC 2016 Resampling Binary

(Normal/Pathological)

E. Kay
et al.
[16]

DropCon-
nected NN N.A. (*) N.A.

(*)
N.A.
(*) 85.20 Yes Physionet/CinC 2016 No Binary

(Normal/Pathological)

C. Potes
et al.
[17]

AdaBoost
and CNN N.A. (*) 94.24 77.81 86.02 Yes Physionet/CinC 2016 Resampling, bandpass

filtering, spike removal
Binary

(Normal/Pathological)

T. Liu et al.
[18] SVM 90.9 87.8 93.0 90.4 Yes Custom dataset of 991

samples

Highpass filter, 50 Hz
notch filter, division in 5

s segments
Binary (Normal/CAD)

Y. Zeinaili
et al. [19] GBC 87.5 87.5 93.75 90.63 Yes 156 PCG signals from

the PASCAL dataset Savitzky–Golay filter
Multiclass (Normal

/Abnormal
S3/Abnormal S4)

S.B. Shuvo
et al. [20] CRNN 86.6 90.3 N.A.

(*)
N.A.
(*) No Physionet/CinC 2016 Resampling and

normalization
Binary (Normal
/Pathological)

N. Baghel
et al.
[21]

CNN 98.6 N.A.
(*)

N.A.
(*)

N.A.
(*) N.A. (*) 2000 samples from

data from GitHub Bandpass filtering Multiclass (Nor-
mal/MS/AS/MR/MVP)

This work

k-NN
(k-NN1-B) 98.7 98.3 99.1 98.7 No

10,104 samples (1:1
Normal/Pathologic)
from 482 signals of

Physionet/CinC 2016

Spike removal,
denoising, bandpass
filter, normalization,
signal division in 5 s
frames with 1 s shift

Binary
(Normal/Pathological)

Feed-
forward

NN
(NN2-B)

95.9 95.4 96.6 96.0 No

10,104 samples (1:1
Normal/Pathologic)
from 482 signals of

Physionet/CinC 2016

Spike removal,
denoising, bandpass
filter, normalization,
signal division in 5 s
frames with 1 s shift

Binary
(Normal/Pathological)

k-NN
(k-NN1-

M)
98.6 98.6 99.5 99.1 No

13,136 samples (1:1:1:1
Nor-

mal/CAD/MVP/Benign)
from 826 signals of

Physionet/CinC 2016

Spike removal,
denoising,

normalization, signal
division in 5 s frames

with 1 s frameshift

Multiclass (Nor-
mal/CAD/MVP/Benign)

Feed-
forward

NN
(NN2-M)

95.8 95.9 98.6 97.3 No

13,136 samples (1:1:1:1
Normal/CAD/MVP
/Benign) from 826

signals of
Physionet/CinC 2016

Spike removal,
denoising,

normalization, signal
division in 5 s frames

with 1 s shift

Multiclass (Nor-
mal/CAD/MVP/Benign)

(*) N.A.: Not available.

Since a denoising step is performed in the pre-processing phase, the classifiers’ perfor-
mance slightly depends on the unprocessed signal quality, considering that the denoising
step’s efficacy cannot perfectly remove all the noises and disturbances. In fact, signal-to-
noise ratio (SNR) measurements were carried out before and after applying the denoising,
indicating an SNR improvement (i.e., 10 log

(
SNROUT
SNRIN

)
, where SNRIN and SNROUT are the

signal-to-noise ratio in input and output to the denoising block) spanning from 15 to 30 dB.
The classifiers were also trained for the multiclass classification of different heart diseases,
allowing for enhanced versatility in different diagnostic scenarios.

5. Conclusions

In this research work, different classifier models (i.e., SVM, k-NN, and neural net-
works) were trained and tested to classify pre-processed PCG signals for both binary (“Nor-
mal”/”Pathologic”) and multiclass classifications (“Normal”/”CAD”/”MVP”/”Benign”).
Two datasets of 482 and 826 signals extracted from the Physionet/CinC 2016 database
were constituted to train and test the binary and multiclass models, respectively. A pre-
processing chain was realized to remove spikes, reduce noise, and normalize the PCG
signals, split into 5 s frames using a 1 s shift. Then, a feature set was extracted from the
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PCG frames and used to train and test the classifiers. The test results demonstrated that the
k-NN-based models obtained the best performance for both binary and multiclass classi-
fication, reaching 98.7% accuracy and F1-score, but requiring a large amount of memory
occupation (up to 11.1 and 14.1 MB for binary and multiclass classification). Nevertheless,
NN-based models obtained a good trade-off between performance and memory occupation,
obtaining up to 96.0% accuracy and low memory occupation (≤735 kB), thus enabling their
implementation on resource-limited systems. In the future, the trained and tested classifiers
could be implemented in edge computing-based systems or mobile healthcare applications,
allowing for real-time diagnosis of the heart’s abnormalities or specific diseases in the
case of multiclass classifiers. Then, the effectiveness of the denoising step was analyzed,
demonstrating an improvement in the SNR in the range from 15 to 30 dB. Therefore, the
developed classifiers can be deployed for low-quality PCG signals and recorded in noisy
environments. As a future step, the multiclass classification could be improved by optimiz-
ing the features extracted for each disease. Also, the SNR of misclassified frames could be
analyzed to gain insights into the relationship between performance and signal quality.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s24123853/s1: File S1: Datasets and annotation files for the
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