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Abstract: Wound dressing production represents an important segment in the biomedical healthcare
field, but finding a simple and eco-friendly method that combines a natural compound and a
biocompatible dressing production for biomedical application is still a challenge. Therefore, the
aim of this study is to develop wound healing dressings that are environmentally friendly, low cost,
and easily produced, using natural agents and a physical crosslinking technique. Hydrogel wound
healing dressings were prepared from polyvinyl alcohol/carboxymethyl cellulose and sericin using
the freeze–thawing method as a crosslinking method. The morphological characterization was carried
out by scanning electron microscopy (SEM), whereas the mechanical analysis was carried out by
dynamic mechanical analysis (DMA) to test the tensile strength and compression properties. Then,
the healing property of the wound dressing material was tested by in vitro and ex vivo tests. The
results show a three-dimensional microporous structure with no cytotoxicity, excellent stretchability
with compressive properties similar to those of human skin, and excellent healing properties. The
proposed hydrogel dressing was tested in vitro with HaCaT keratinocytes and ex vivo with epidermal
tissues, demonstrating an effective advantage on wound healing acceleration. Accordingly, this study
was successful in developing wound healing dressings using natural agents and a simple and green
crosslinking method.

Keywords: hydrogel; wound healing; dressing; eco-friendly

1. Introduction

The skin is an important organ that plays an important role in protecting the body
from the external environment; therefore, its protection can be decreased as a result of injury
or damage. For this reason, many efforts have been devoted to the development of wound
healing dressings to accelerate wound closure [1]. Ideally, materials for wound dressing
should protect wounds from infection and provide an appropriate wound environment:
e.g., keep the wound moist or provide mechanical protection, be easy to remove, and be
biocompatible, biodegradable, and non-toxic [2].

Wound healing takes place efficiently in a wet environment, as fluid losses from
wounded skin are almost 20 times greater than from normal skin [3]. Therefore, hydrogels
are very effective as dressing materials because they can control the fluids lost since they
hold large amounts of water, prevent scar formation, allow for cell proliferation and the
epithelialization process, and possess a tissue-like structure and compatibility [4].
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Furthermore, since the number of chronic wounds has risen due to the increase in
the number of older adults [5], the production of wound dressings also continues to
increase, resulting in high levels of pollution and waste. Therefore, finding clean, safe, and
cost-effective techniques while maintaining healing properties remains a challenge in the
development of wound dressings.

Green technology, which combines environmentally friendly processes and nat-
ural active ingredients, is a highly competitive field in pharmaceutical research and
production development [6].

Freeze–thawing is a physical crosslinking technique used in the preparation of bioma-
terials. Avoiding toxic organic solvents and cross-linking agents, it has the advantage of
yielding biocompatible and environmentally friendly materials [7,8].

Natural and synthetic polymers are often used as wound dressing materials [9].
Among them, poly(vinyl alcohol) (PVA), a water-soluble long-chain polymer obtained
by the alcoholysis, hydrolysis, or ammonolysis of poly vinyl acetate, is a biocompatible
and partially biodegradable material; it has high water absorption and good mechanical
properties, e.g., a high elastic modulus and high mechanical strength [10,11].

Physical or chemical methods can be used to crosslink PVA. Chemical methods
use crosslinking agents that react with the hydroxyl groups of PVA to form networks,
which can affect the biocompatibility of the samples or interact with drugs or other filler
compounds [12–14]. Indeed, physical methods of crosslinking PVA are preferred, and
among them, freeze–thawing is the better choice since heat treatment or irradiation can
affect drugs or biologically active compounds loaded in the wound dressing [15,16].

Carboxymethyl cellulose (CMC) is a water-soluble cellulose derivative, and due to its
properties, including tunable biodegradability, potential antioxidant activity, biodegrad-
ability, and biocompatibility, it represents a highly versatile biomaterial [17].

Because of their minimal interference with new tissue formation and their high liquid
absorption capacity, CMC can be used in various forms (hydrogels, scaffolds, etc.) and
combinations (e.g., blended with other polymers) in biomedical engineering research,
including wound healing and wound dressing applications [18,19].

Furthermore, its hydrophilic nature (due to its hydroxyl and carboxyl groups), allows
it to be blended and cross-linked with other materials, such as synthetic polymers, natural
polymers, and inorganic materials, thus enabling the preparation of innovative wound
dressing biomaterials.

Accordingly, both PVA and CMC are suitable for use as dressing materials [20].
Furthermore, depending on the network’s composition and water vapor transmission

(WVT), PVA/CMC blends have been demonstrated to be highly absorbent, with gel fraction
values close to normal (healthy) skin tissue and commercial wound dressings, an important
feature related to a balanced moisture microenvironment at the wound site [21]. In this
context, the addition of a wound healing accelerating agent may improve the performance
of wound dressings. Many natural active compounds have been used to produce wound
dressings that ensure maximum recovery [22]. Among them, sericin is a natural protein
synthesized by Bombyx mori, which is a common waste product from processing industries.
Several hydrogels have been developed combining sericin with other polymers [23–25],
since it is a biocompatible and biodegradable material with several biomedical properties,
including antioxidant, anti-bacterial, anti-inflammatory, and wound healing acceleration
effects [26–29]. It has been proven that sericin does not cause immunological reactions, has
antioxidant properties, and can activate fibroblasts to promote collagen type I synthesis,
leading to wound healing promotion [30].

In this study, we developed a wound healing dressing based on polyvinyl alcohol,
carboxymethyl cellulose, and sericin using freeze–thawing as a crosslinking method. The
physical, mechanical, and biological properties of the dressing were evaluated based on
their structural analysis, elongation, Young’s modulus, cytotoxicity, and cell migration.
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2. Results and Discussion
2.1. Eco-Friendly Preparation Method

The proposed method for preparing the hydrogel wound dressings is distinguished
by its environmental friendliness, ease of operation, low cost, and optimal throughput. The
method is based on the sequential mixing of PVA with CMC, sericin, or both, in distilled
water to prepare different formulations. After casting the prepared solutions into proper
molds to shape the wound dressings, the crosslinking reaction was allowed to occur via
freeze–thawing, i.e., each formulation was frozen at −80 ◦C for 16 h and then thawed
at 25 ◦C for 8 h (Figure 1). After this step, the dressings were frozen at −80 ◦C until
used. The method and the wound dressings’ compositions are described in more detail in
the Section 4. Their mechanical, morphological, and biological properties were assessed
through different techniques, which are described in the next sections.
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Figure 1. Illustration of the preparation process of PVA/CMC/SER wound healing dressings.

2.2. Mechanical Properties of Wound Healing Dressings

The mechanical properties of hydrogel wound dressings, such as their strength, tensile
strength, softness, flexibility, and elasticity, are essential for their applications since they
should have good strength and elasticity to mimic the elasticity of skin during repair.
The compression Young’s modulus was determined as the slope of the curves in the
linear regime (low strains), and it was used for evaluating and comparing the mechanical
properties of the as-prepared hydrogel wound dressing materials.

The rigidity of the hydrogel increased with the PVA loading due to the increases in the
hindrance of the polymeric chains and the number of reticulation sites (Figure 2, top) [31]. In
particular, the elastic moduli were (5.01 ± 4.00) kPa, (6.26 ± 3.32) kPa, (11.76 ± 5.03) kPa, and
(22.41 ± 6.95) KPa for PVA5, PVA6.7, PVA8, and PVA10, respectively (Figure 2, bottom).

Fixing the amount of PVA8, CMC was added, and the linear elastic modulus was
(10.81 ± 2.26) kPa, (18.42 ± 6.33) kPa, (17.38 ± 3.57) kPa, and (17.49 ± 10.37) kPa for
PVA8/CMC2, PVA8/CMC3.5, PVA8/CMC5, and PVA8/CMC10 (Figure 3); therefore, the
CMC loading increased the rigidity. The upper bound of this increase is represented by the
rigidity of the PVA at the maximum tested concentration. In particular, the PVA8/CMC3.5
exhibited the best combination of linear elasticity and strain capability. With CMC loadings
higher than that of PVA8/CMC3.5, the ultimate stress and strain exhibited by the prepared
hydrogels decreased (Figure 3, bottom); therefore, we chose this combination.

Before analyzing the three-component blend, in order to evaluate the effect of adding
sericin on the rigidity of the hydrogel material, PVA8 samples were loaded with SER
in order to obtain different combinations of PVA and sericin. (Figure 4, top). The ad-
dition of sericin induced an increase in the linear elastic rigidity, i.e., (9.23 ± 1.13) kPa,
(11.43 ± 1.43) kPa, (10.31 ± 2.51) kPa, (15.67 ± 6.30) kPa, and (15.39 ± 3.08) kPa for
PVA8/SER2, PVA8/SER5, PVA8/SER10, PVA8/SER15, and PVA8/SER25, respectively
(Figure 4, bottom). In particular, for higher values of SER, the blend exhibited an improved
elastic modulus, showing more compactness and also resulting in a more slippery effect on
its surfaces.
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Figure 3. (Top) Stress/strain curves resulting from DMA (compression) analysis of wound dressings
made of PVA8 in water and different concentrations of CMC, namely PVA8/CMC2, PVA8/CMC3.5,
PVA8/CMC5, and PVA8/CMC10. (Bottom) Comparison of the compression Young’s moduli for the
four CMC concentrations.
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Figure 4. (Top) Stress/strain curves resulting from the DMA (compression) analysis of wound
dressings made of PVA/water and different concentrations of sericin (SER), namely PVA8/SER2,
PVA8/SER5, PVA8/SER10, PVA8/SER15, and PVA8/SER25. (Bottom) Comparison of the compres-
sion Young’s moduli for the five SER concentrations.

The combination of PVA with CMC and sericin provides optimal results in terms of
the mechanical properties, as illustrated in (Figure 5). With fixed amounts of PVA and
CMC (PVA8/CMC3.5), different SER loadings were tested, namely PVA8/CMC3.5/SER2.5,
PVA8/CMC3.5/SER5, PVA8/CMC3.5/SER7.5, and PVA8/CMC3.5/SER10. The compres-
sion Young’s modulus values were as follows, respectively: (14.15 ± 2.13) kPa,
(11.79 ± 1.61) kPa, (12.39 ± 0.55) kPa, (7.64 ± 1.09) kPa, and (8.90 ± 4.67) kPa (Figure 5,
bottom). The effect of the addition of sericin to the PVA/CMC blend was a decrease in
the linear elastic compressive rigidity, which is in contrast to the effect of sericin on PVA.
This can be ascribed to sericin, with its lateral side groups in amino acids that facilitate
blending with the polymeric chains of CMC, thus resulting in a softer and more elastic
microstructure [32,33]. With a fixed amount of PVA (PVA8), the compression tests revealed the
optimal loading of PVA8/CMC3.5 and that of sericin higher than in PVA8/CMC3.5/SER7.5.
The compression results related to the hydrogel samples containing a higher concentration
of sericin, namely PVA8/CMC3.5/SER15, were not reported since they were very slippery,
which prevented a correct measurement.

Tensile tests were performed to compare the tensile rigidity of the hydrogels, since they
need to be applied on the skin for wearable applications, and their stretchability determines
their conformality and skin-adaptability. The resulting stress/strain curves are displayed
in Figure 6: as expected, the curves present a higher data dispersion for high strains due to
the high variability of the stretched elastomeric materials. The tensile Young’s moduli in
the linear low-strain regime and in the high-strain regime were determined from the slope
of the curves, whereas the ultimate stress and the strain at break provide an indication of
the stretchability of the hydrogel patches.
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The sericin loading in PVA8/SER10, PVA8/SER15, PVA8/SER20, and PVA8/SER25
improved the low-strain rigidity but negatively affected the other parameters (Figure 7),
allegedly due to the mechanical robustness and low elasticity of the protein, which hardened
the texture and compactness of the hydrogels. In addition, higher sericin loadings induced
a slippery effect on the gripping, which produced a lower Young’s modulus value.

On the other hand, the CMC in PVA8/CMC2, PVA8/CMC3.5, and PVA8/CMC5 did
not significantly affect the tensile mechanical parameters (Figure 8). This is in contrast to the
results of the compression analysis, according to which both the CMC and sericin improved
the PVA’s mechanical resistance: this difference can be ascribed to the different properties
(especially its low tensile elasticity) of the protein with respect to the other polymers.
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PVA8/CMC5. (Bottom) Comparison of tensile Young’s modulus and strain at break for the
four CMC concentrations.

To evaluate the optimal sericin loading in tension mode, tensile tests were performed
on hydrogel dressings made of the PVA8/CMC3.5 blend with different amounts of sericin.
The results are reported in Figure 9 and reveal a steady increase in the tensile Young’s
modulus with an optimal amount of sericin higher than in the PVA8/CMC3.5/SER7.5 blend,
since these samples exhibited linear elastic rigidity, but maintained a high stretchability
strain to break. In particular, the PVA8/CMC3.5/SER10 and PVA8/CMC3.5/SER15 blends
had Young’s moduli of (6.32 ± 3.18) kPa and (6.71 ± 3.41) kPa, and strains to break of
(301 ± 139)% and (326 ± 155)%, respectively.
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Therefore, taking into consideration the results from the tensile and compression
tests, as well as considering sericin’s biological activity, we converged two formulations:
PVA8/CMC3.5/SER10 and PVA8/CMC3.5/SER15, namely SER1 and SER2, which have
excellent stretchability and compressive properties, similar to those of human skin, and
high contents of sericin [34].

2.3. Morphological Characterization of the Wound Dressings

Scanning electron microscopy (SEM), used to characterize hydrogel microarchitectures [35],
provided a detailed morphological analysis of the wound dressings, from the overall struc-
ture of the material to the cross-sections.
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Figure 10 shows SEM micrographs of the freeze-dried SER1 (Figure 10A,B) and SER2
(Figure 10C,D) hydrogel wound healing dressings at different magnifications. Both sam-
ples are characterized by a honeycomb-like macroporous structure, which is essential for
biomedical application since it provides space for oxygen and nutrient transportation and
cell growth [36]. Furthermore, the SER1 dressing had fewer pores than SER2, which exhibited
a three-dimensional structure with different pore sizes. These results show that the average
pore diameter decreased as the percentage of sericin increased. According to the literature, the
highly porous structure of SER2 suggests its ability to absorb wound exudate and promote
skin cell adhesion and spreading for the re-epithelialization of injured skin [37].
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SER2 addressed two important issues, i.e., mechanical strength that mimics skin
characteristics and suitable porosity to absorb wound exudate. Therefore, in the follow-
ing sections of this manuscript, unless otherwise indicated, we always refer to SER2
(PVA8/CMC3.5/SER15) as the wound dressing material.

2.4. Biological Properties of Wound-Healing Dressings

The SER2 hydrogel wound dressing is made of three components, one synthetic
polymer, PVA, a semi-natural CMC, and a protein, the silkworm sericin (SER). PVA was
used because of its biocompatibility and good mechanical properties and because it can
be crosslinked by physical methods. Carboxymethyl cellulose (CMC) has excellent water-
absorbing and swelling capacities, is able to blend with other polymers, and is characterized
by antioxidant activity [38].

SER is a water-soluble protein with mitogenic and cytoprotective effects on ker-
atinocytes and fibroblasts, as well as on tissue repair and skin development [39,40]. Fur-
thermore, amines, hydroxyl, and carboxyl groups enable the crosslinking of sericin with
other biomaterials (e.g., PVA), thus improving mechanical performance.

In order to assess the biological properties of the developed SER2 as wound dressing
material, in vitro and ex vivo experiments were performed.

A scratch assay was used to investigate the effects of the developed wound dressing
material on cellular proliferation and migration. Human keratinocyte (HaCaT) cells were
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used since they proliferate and migrate to close the wound and restore the epithelial
layer [41]; a higher rate of cell migration promotes a faster wound healing process. The
HaCaT cells were grown until 80% confluence, and scratch wounds were created and
photographed over time up to 24 h (T0, T6, T16, and T24). The cell-free area was assessed,
and the cell migration rate was calculated as the decrease in the cell-free area (Figure 11).
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Figure 11. HaCaT cell scratch assay results after exposure to DMEM (control), PVA8/CMC3.5, or
SER2 wound dressing material. The asterisks indicate a statistically significant difference (p< 0.05).

Quantification of the wounded area revealed that incubation with the SER2 dressing
significantly enhanced the migration of HaCaT cells to the scratch area after 16 h (p = 0.001)
and after 24 h (p = 0.0004), compared to the control (DMEM) and PVA8/CMC3.5 groups,
whereas, no significant differences were found after 6 h when comparing the treated and
CTRL groups (p = 0.24).

The skin is composed of two layers: the epidermis and the dermis, separated by
the basement membrane made of collagen IV and laminin. The outer layer (epidermis)
consists mostly of keratinocytes, melanocytes, Merkel cells, and Langerhans cells, and the
dermis is composed of fibroblasts and is rich in extracellular matrix (ECM) components
(e.g., collagen I–III, elastins, and proteoglycans) [42]. Therefore, cutaneous wound healing
involves interactions between dermal fibroblasts and epidermal keratinocytes as well as
cell–extracellular matrix interactions.

Fibroblasts are important in regulating the inflammatory phase, since the early stage
of wound healing is characterized by crosstalk between fibroblasts and immune cells. Af-
terward, fibroblasts are responsible for producing extracellular matrix (ECM) components
and determining crosstalk with endothelial cells and keratinocytes [43].

The current study describes the wound healing experiments conducted in EpiDerm
Full Thickness (EFT) models, which are widely used in dermatological research, including
wound healing, to reduce animal use in research. This in vitro human skin model con-
sists of human epidermis comprising human keratinocytes and fibroblasts. Epidermal
wounds, induced by means of a 2mm punch biopsy, were evaluated after incubation with
PVA8/CMC3.5 and SER2 (PVA8/CMC3.5/SER15) as hydrogel wound dressing materials.
The in situ re-epithelization was qualitatively analyzed by immunostaining with markers
of dermal fibroblasts (vimentin) and keratinocytes (keratin 14). To distinguish the ker-
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atinocytes from the fibroblasts in the co-culture, the keratinocytes were stained green, and
the fibroblasts were stained red.

Figure 12 shows the wounded EpiDermFT immunostained with Keratin 14 (green
fluorescence) (Figure 12A,C,E) and vimentin (Figure 12B,D,F). On day 7, the vimentin-
positive fibroblasts overgrew in the samples incubated with SER2. They highly populated
the induced wounds within the EFT tissues (Figure 12F), whereas few red spots were visible
within the wound areas in the control samples and tissues incubated with PVA8/CMC3.5,
as shown in Figure 12B,D respectively, thus demonstrating the increase in fibroblast migra-
tion across the wound, induced by the presence of sericin in the hydrogel wound dressing.
Furthermore, the green fluorescent signal indicates that keratinocytes were present in the
region of the wound (Figure 12A,C,E). Notably, as shown in Figure 13, in the sample treated
with SER2, many skin-like structures covered the wound (Figure 13C). The green fluores-
cence shows that CK-14 positive keratinocytes were present in these structures; afterward,
they were then counterstained with DAPI to highlight the cell nuclei (Figure 14). Therefore,
in the EFT models with SER2, which contains sericin, cell migration and proliferation
increased compared to the samples incubated with PVA8/CMC3.5 wound dressings and
the controls (DMEM).
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Figure 12. In situ staining of wounded EpiDermFT. Tissues were wounded with a 2 mm punch biopsy
and immunostained with Keratin 14 (green fluorescence) (A,C,E) and vimentin (red fluorescence) (B,D,F).
(A,B) Fluorescence micrographs of the control sample; (C,D) fluorescence micrographs tissues in-
cubated with dressing containing only PVA and CMC; (E,F) wound incubated with SER2 dressing.
Scale bars represent 100 µm.
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biopsy. (A) Control sample; (B) wound incubated with PVA8/CMC3.5 dressing; (C) wound incubated
with SER2 dressing. Scale bars represent 1000 µm.
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Figure 14. In situ staining of skin-like structures taken from epidermal wounds incubated with
SER2 dressing and immunostained with (A) Keratin 14 (green fluorescence) and (B) vimentin (red
fluorescence). (C) High-magnification details of the skin-like structures: blue shows DAPI-stained
nuclei, and green shows Keratin 14 immunostaining. Scale bars represent 100µm for (A,B), and
50µm for the magnified image (C).

Our results agree with the results reported by Tariq et al. [44], who demonstrated the
wound healing effects of sericin in diabetic mice; further studies demonstrated that sericin
increased cell attachment and migration, the proliferation of keratinocytes and fibroblasts,
and collagen synthesis, thus promoting wound healing in humans without the production
of pro-inflammatory cytokines [45–49].

Although a PVA/CMC/SER hydrogel and its physicochemical characterization (gel
fraction, water absorption, FT-IR, etc.) have been already proposed [23], here, we report for
the first time the mechanical properties and biological activity of an optimized SER2 blend
to be used for wound dressing application.

3. Conclusions

This study demonstrates the successful eco-friendly production of hydrogel wound
dressings based on polyvinyl alcohol, carboxymethyl cellulose, and sericin. The preparation
method is environmentally friendly and based on freeze–thawing as a crosslinking method.
The hydrogel wound dressings exhibited elasticity, non-toxicity, and biocompatibility and
possessed high potential for wound healing acceleration, as demonstrated by in vitro and
ex vivo experiments. Further improvements of the proposed wound healing dressing can
be envisioned by tuning the mechanical and controlled drug release properties to improve
cell migration or to obtain effective timing patterns for wound healing. Finally, additional
properties, such as oxygen permeability and skin adhesion, as well as in vivo efficacy and
safety studies, will be investigated in future studies.

4. Materials and Methods
4.1. Materials

Poly (vinyl alcohol) (PVA, MW 146,000–186,000), sodium carboxymethyl cellulose,
and sericin were purchased from Sigma Aldrich. HaCaT keratinocytes were purchased
from Cell Line Service GmbH (Eppelheim, Germany) and cultured in 5% CO2 at 37 ◦C
in regular Dulbecco’s Modified Eagle’s Medium (DMEM) (Corning) supplemented with
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10% heat-inactivated fetal bovine serum (Corning), glutamine (2 mM), penicillin (100 U⁄ml)
(Corning), and streptomycin (100 mg/ml) (Corning). Trypsin was purchased from Sigma
Aldrich. EpiDermFTTM tissues (EFT-412) were provided from the MatTek Corporation
(Ashland, MA, USA); Dulbecco’s Modified Eagle (DMEM)-based medium for maintaining
cultures was supplied by the manufacturer (EFT-400-MM). Anti-Cytokeratin 14 antibody,
Recombinant Anti-Vimentin antibody, Goat Anti-Rabbit IgG H&L (Alexa Fluor® 647)
(ab150079), and Donkey Anti-Mouse IgG H&L Alexa Fluor® 488) (ab150105) were procured
from Abcam and used according to the manufacturer’s instructions.

4.2. Hydrogel Wound Healing Dressing Preparation

Hydrogel wound healing dressings with different compositions were prepared by
mixing calculated amounts of PVA 10%wt, CMC 4%wt, and sericin 12%wt. The starting
solutions of PVA and CMC were prepared by stirring the powders in water at 90 ◦C for
at least 1 h. Such solutions were extremely viscous and, therefore, were handled at a high
temperature, whereas the sericin was easily dissolved in water at room temperature. The
compositions of the tested samples are reported in Table 1.

Table 1. Different compositions of hydrogel wound healing dressings with different amounts
(milligrams) of PVA, CMC, and sericin. The numbers appearing in the sample names for CMC
and sericin (SER) correspond to the percentages with respect to the amount of PVA.

Sample Name

Composition
(mG per G of Hydrogel)

PVA CMC Sericin

PVA10 100 0 0
PVA8 80 0 0

PVA6.7 67 0 0
PVA5 50 0 0

PVA8/CMC2 80 1.6 0
PVA8/CMC3.5 80 2.8 0
PVA8/CMC5 80 4 0
PVA8/CMC10 80 8 0

PVA8/SER2 80 0 1.6
PVA8/SER5 80 0 4

PVA8/SER10 80 0 8
PVA8/SER15 80 0 12
PVA8/SER25 80 0 20

PVA8/CMC3.5/SER2.5 80 2.8 2
PVA8/CMC3.5/SER5 80 2.8 4

PVA8/CMC3.5/SER7.5 80 2.8 6
PVA8/CMC3.5/SER10 (SER1) 80 2.8 8
PVA8/CMC3.5/SER15 (SER2) 80 2.8 12

All mixtures were uniformly poured into a 12-well plate. The crosslinking reaction
of the tested solutions was allowed to proceed by the freeze–thawing method. Each
formulation was frozen at −80 ◦C for 16 h, and then thawed at 25 ◦C for 8 h. This process
was counted as 1 cycle. Each formulation was prepared using 1 cycle of the freeze–thawing
method and then frozen and stored long-term at −80 ◦C until it was used, retaining its
mechanical properties and biological activity.

4.3. Mechanical Tensile and Compression Measurements

Mechanical tensile and compression tests were conducted on the non-swollen hy-
drogels through dynamic mechanical analysis (DMA). The samples were removed from
freezing conditions half an hour before the mechanical analyses. For the compression
tests, the samples were shaped into circles with a 6.5 mm diameter and a 3.5 mm height
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(Figure 15A). The tests were performed with a ramp force of 1 N/min to an upper limit of
18 N and a pre-load of 0.01 N.
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Figure 15. Samples used for the DMA analysis. (A) Circular samples for compression tests.
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For the tensile tests, the samples were shaped according to the ASTM E8 standard for
tensile test specimens [50]. For this purpose, a polylactic acid (PLA) 3D-printed master was
used to create a PDMS mold with the right shapes (Figure 15B). In particular, the gauge
length of the shaped hydrogels was 15 mm, whereas the ends were wider to favor the
gripping of the clamps in the tensile machine (Figure 15C). The width and thickness of the
specimens were 3 mm and 2.5 mm, respectively. In the case of too-slippery samples, an
adhesive rough tape was used on the inner side of the clamps to improve the grip. The tests
were performed with a ramp force of 0.5 N/min up to the failure of the samples (Figure 15C)
and a pre-load of 0.01 N. All the results are an average of the five tested samples.

4.4. Morphological Characterization by SEM Analysis

Morphological analysis of the freeze-dried SER1 (PVA8/CMC3.5/SER10) and SER2
(PVA8/CMC3.5/SER15) wound dressings were performed by means of a scanning electron
microscopy-focused ion dual beam (SEM-FIB) using the FEI Helios NanoLab 600i Dual
Beam. All samples were sputter-coated with a thin gold film prior to SEM analysis.

4.5. Wound Scratch Assay

For the wound healing and cell migration assays, HaCaT cells were plated into a
12-well plate at a concentration of 1 × 105 cells containing Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum (FBS) and incubated overnight at
37 ◦C in a humidified 5% CO2 atmosphere. We left them until they reached 80% conflu-
ence. Afterward, the DMEM was completely removed, and the adherent cell layer was
scratched with a sterile pipette tip; we also made horizontal reference lines to have a grid
for alignment to obtain the same field for each image acquisition cycle. Cellular debris
were removed by washing with PBS. Then, to the treated groups, the PVA8/CMC3.5 and
SER2 (PVA8/CMC3.5/SER15) dressings were added. The control cells received only fresh
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medium. The cells were then incubated at 37 ◦C in a humidified 5% CO2 atmosphere. Then,
the images of the scratch area were captured at 0 h (just after scratching cells), 6, 16, and
24 h using the AMG Evos FL Fluorescence microscope.

We determined the scratch area, wound coverage of the total area, and the average
and standard deviation of the scratch width by means of ImageJ software (Version 1.54j)
(https://imagej.net/ij/download.html accessed on 15 June 2024). We calculated the per-
centage of wound closure according to (Equation (1)) [51]:

Wound Closure (%) =
At=0 − At=∆t

At=0
× 100 (1)

where At=0 is the initial wound area, and At=∆t is the wound area after n hours of the
initial scratch.

The quantification of the wound area, wound coverage of the total area, average
wound width, and width standard deviation in the images obtained from the wound-
healing assay was carried out according to Suarez-Arnedo’s method [52]

The images were imported into the software, and a variance filter was applied
(Figure 16C) after having enhanced contrast (Figure 16B) to create a new image with
high-intensity pixels within the cell monolayer and low-intensity pixels within the open
wound area. Afterward, we applied a threshold to the processed image in order to obtain
binary segments (Figure 16D). Since the wound area can contain single cells or cell islets, we
performed hole filling on the area of the wound (Figure 16E). Figure 16 presents an overview
of the image-processing carried out to have a selection of the scratch area (Figure 16F).
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Figure 16. Overall process of wound image processing. (A) Original image; (B) scratch image after
applying enhanced contrast; (C) image after applying the variance filter; (D) binarization of the
image; (E) image after applying hole filling on the area of the wound; (F) selection of the scratch area.

The scratch area on the 0th hour was considered 100%, and the reduction in area was
calculated for each set at 6, 16, and 24 h and plotted on a graph. The data were expressed
as the mean ± SD. One-way ANOVA, followed by post hoc test, was used to compare the
control (CTRL) and groups treated with PVA8/CMC3.5 and SER2 dressings. A p-value
of ≤0.05 was considered statistically significant.

4.6. Ex Vivo Experiments

Wound healing experiments were conducted in a full-thickness in vitro human skin
model (EFT). This model exhibits stratified epidermal components and a fully developed
basement membrane and resembles in vivo skin in regard to both morphology and barrier
function. Furthermore, the cultures were derived from human neonatal foreskin tissue to
form a multi-layered highly differentiated model of human skin that consisted of human-
derived epidermal keratinocytes and human-derived dermal fibroblasts grown on a semi-
permeable membrane. The EFT skin tissue inserts were transferred into 6-well plates

https://imagej.net/ij/download.html
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containing 2.5 mL of serum-free medium upon arrival. The tissues were then equilibrated
at 37 ◦C under 5% a CO2 atmosphere condition overnight. The medium was aspirated and
replaced with fresh pre-warmed media after the equilibrations. The epidermal wounds
were induced using a sterile 2 mm dermal biopsy punch (Figure 17B). After removing the
cut sections of the epidermis with a fine tipped forceps, hydrogel wound healing dressings
were added. The control experiments received only fresh pre-warmed serum-free medium.
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of epidermis; (C) hydrogel wound healing dressing after immersion in DMEM medium; (D) cut
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Epithelial healing was observed within 5 days following the punch biopsy.
Following treatment, the EpiDermFTTM tissues were fixed in 4% paraformaldehyde

for 30 min and then washed three times with PBS containing 0.01% Triton X-100. The
tissues were blocked for 1 h with 10% normal goat serum/1% BSA in PBS. The primary
antibody was diluted in 1% BSA/PBS and incubated at room temperature for 2 h. Following
incubation with the primary antibody, the tissues were washed two times (10 min for each
wash) in PBS containing 0.1% normal goat serum. The secondary antibody (goat anti-mouse
488, AlexaFluor, Molecular Probes) was diluted 1:400 in 1% BSA/PBS and incubated with
the samples for 1 h at room temperature. Following incubation with the secondary antibody,
the tissues were rinsed with PBS containing 0.1% normal goat serum and stained with
DAPI (0.1 µg/mL). The images were captured using Zeiss Axio Imager M2 (Carl Zeiss
Microscopy, LLC, White Plains, NY, USA).
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