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1 Introduction

The design of a future µ+µ− collider (MuCol) with multi-TeV energy has recently been pro-
posed, showing outstanding possibilities to discover and test different aspects of high energy
physics [1–3]. Among these, very interesting prospects have been highlighted for the dis-
covery of Weakly Interacting Massive particles (WIMPs) and for new heavy neutral bosons.

For example, as shown in [4], Z ′ type of resonances from gauged Lµ − Lτ models,
produced through s-channel radiative return, can be probed directly up to very small cou-
plings, of the order of 10−3, for a 1 TeV Z ′, by a 3 TeV MuCol with 1 ab−1. A powerful test,
and a higher reach on the mass of the resonance, can also be obtained indirectly, via preci-
sion measurements. In this case, for example, a Y -universal Z ′ model can be ruled out by a
10 TeV MuCol, for Z ′ masses of the order of 100 TeV and couplings of the order of 10−1 [5].

WIMP dark matter can be realistically discovered by a multi-TeV MuCol up to the
thermal target of the electroweak (wino-like) triplet, considering the channel where the
WIMPs are produced in pairs, generating mono-X signals with large missing energy, or
by the decays of heavier charged states of the WIMP EW multiplet, which give raise to
disappearing tracks [6, 7]. A powerful alternative strategy to test the WIMP scenario in
its minimal realization, the minimal dark matter (MDM) hypothesis, is to consider the
detection of bound states formed by two MDM fermionic weak multiplets [8]. For the
Majorana 5-plet, MDM bound states can be produced resonantly with large cross section
at a muon collider, provided the MuCol runs “on-peak” at a center-of-mass energy close to
the mass of the bound state,

√
s ≈ 2M . This would permit to discover MDM 5-plets with

low statistics, few fb−1, in the first phase of the collider operation [8]. Conversely, mono-X
signals show lower sensitivities and would hardly be able to test the 5-plet MDM thermal
target [9]. A better coverage on WIMPs could be obtained by considering disappearing
tracks [6] and missing-mass searches, even if the 5-plet target would be reached only for√

s ≳ 30 ÷ 50TeV and a large amount of integrated luminosity, L ≳ 2 ÷ 100 ab−1 [7].
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Precision measurements can also allow to test the 5-plet at a 14 TeV MuCol with O(10)
ab−1, even if only indirectly [10].

In this letter we propose a strategy that would allow to detect directly charged reso-
nances of the W ′ type at a muon collider, and a new efficient way to test MDM bound
states. This opportunity is offered by the analysis of the channel where the new charged
state, either a W ′ or a MDM bound state, is produced in association with the W boson of
the Standard Model (SM). Besides the unique opportunity to directly test a W ′ new boson,
with a very high reach, this analysis offers a very efficient way to test the WIMP scenario
through the detection of MDM bound states, which is complementary to the search for the
resonant production of the neutral bound state. Furthermore, it presents the advantage of
not needing an “on-peak” focus of the MuCol beam energy near the bound state mass, but
just requiring the experiment to operate slightly above the kinematic threshold,

√
s ≳ 2M .

In the following, after having introduced our theoretical framework for X generic
charged resonances of the W ′ type (section 2) and for the MDM bound states (section 3),
we will present our search strategy in section 4 and will offer our conclusions in section 5.

2 Charged resonances

We focus on a heavy spin-1 state transforming as a triplet under the SM electroweak group.
We consider the case of an effective W ′ boson, which we indicate as X, which interacts
with the SM particles analogously to the SM W . The relevant Lagrangian reads:

LW ′
eff = gX√

2

[
V CKM

ij ūiγ
µPLdj + V P MNS

ij ν̄iγ
µPLℓj

]
Xµ + H.c. , (2.1)

with V CKM and V P MNS denoting the CKM and PMNS matrices. In the case gX = g2,
where g2 = e/ sin θw is the SM weak coupling, the X interactions are identical to those of
the SM W . This reproduces the Sequential SM scenario (SSM) of ref. [11]. In our analysis
we will leave gX as a free parameter. The X decay rates read

Γ(X± → ℓ±ν) ≃ g2
X

48π
mX Γ(X± → q̄q′) ≃ g2

X

16π
mX . (2.2)

The decays to Higgs and SM gauge bosons are suppressed.
The most stringent constraints on SSM W ′’s are currently set by the recent CMS search

in the lepton plus missing transverse momentum final state [12], at the 13 TeV LHC with
138 fb−1, which excludes at 95% C.L. a SSM W ′ lighter than 5.7 TeV. This limit reduces
to softer bounds for gX < g2.

Charged W ′’s also appear in composite Higgs theories [13–15], generated by a new
strong dynamics as composite spin-1 weak triplet resonances. The composite W ′ couplings
to Higgs and gauge bosons, differently from the SSM case, are typically relevant.

3 Minimal Dark Matter Bound States

A compelling and Minimal solution to the Dark Matter puzzle is to consider, in addition
to the SM, a new fermionic multiplet under the SM weak gauge group [16], whose neutral
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Figure 1. Leading Feynman diagram for the SM W associated production of a charged spin-1
resonance X at a muon collider.

and, as such, lightest component constitutes a good DM candidate. The cosmological DM
abundance can be then reproduced thermally, via freeze-out, for TeV-scale values of the
DM mass, M [16, 17]. For M ≳ MW,Z/α2, pairs of MDM multiplets can form Coulombian-
like electroweak bound states. This is verified for larger representations, and in particular
in the case of 5-plets under SU(2)L of Majorana fermions with zero hypercharge. Note that
the Majorana 5-plet represents a special case of MDM, because it can be made accidentally
stable [7, 16]. After taking into account Sommerfeld and bound-state corrections [17], the
5-plet thermal abundance matches the DM density for a mass M ≈ 14TeV.

Bound states with the same quantum numbers as the weak vectors inherit, via mixing,
couplings to SM fermions. We are especially interested in such bound states, as they can
thereby be directly produced in µ+µ− collisions. In particular, the charged components
of the bound state can be produced in the associated W channel we are studying. For
the 5-plet MDM, these special bound states exist: the spin-1 ns3 vector triplets [8]. The
ground state 1s3, which will be the focus of our analysis, decays into fermions with a rate
Γann = 15625α5

2M/48 ≈ 0.17GeV [8]. Its collider phenomenology can be reproduced by
the effective W ′ description of the previous section with an effective coupling:

gX = g1s3 ≃ 0.014 g2 , (3.1)

while its mass is mX = m1s3 ≈ 2M ≈ 28TeV.

4 X±W∓ associated production

We focus on the possibility to directly search for a charged spin-1 resonance X at a muon
collider, in the SM W associated production channel µ+µ− → X±W∓. The leading Feyn-
man diagram is shown in figure (1).

Note that in composite W ′ scenarios [13–15] further contributions to the XW associ-
ated production, which we will not include in our analysis, since they are suppressed for
our SSM effective description, come from the exchange of an EW gauge boson in the s-
channel. We will leave the analysis of these signal topologies to a future study. Therefore,
the results we will show in this paper represent only a conservative estimate of the reach
on a composite W ′ resonance.
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Figure 2. Left plot: cross section for the associated production of a charged spin-1 resonance X

with a SM W (figure 1) at a muon collider with different beam energies, as function of the charged
resonance mass. The plotted cross sections are calculated in the SSM case, with gX = g2. The cross
section depends quadratically on gX . Right plot: cross section for the associated production of a
5-plet MDM bound state with a SM W at a muon collider, as function of the center-of-mass energy.

The cross section can be expressed in the analytic form:

σ(µ+µ− → X+W−) = σ(µ+µ− → X−W +)

≃ g2
2 g2

X

1536π s2 m2
X m2

W

[
s2 + 10m2

Xs + m4
X + m4

W (4.1)

+ 10m2
W (s − 5m2

X)
]√

(s − m2
X)2 − 2m2

W (s + m2
X) + m4

W

We find good agreement between the analytic evaluation of the cross section and the
numeric calculation with MadGraph5 [18]. The cross section is shown in figure 2 for different
MuCol

√
s (plot on the left), as a function of mX , and, as a function of

√
s, in the specific

case of the W associated production of the 1s3 MDM bound state (plot on the right).
Note that EW radiation effects in high-energy lepton colliders may be significant for the

very high energy cases above
√

s =10 TeV, as recently pointed out in [5] (see also [19, 20]).
The evaluation of EW radiative corrections for the specific cases of the W ′ and MDM
bound state considered in this manuscript deserves a dedicated investigation, which we
leave for future studies.1 Despite non negligible corrections might be expected in the cases
of very high collision energies, we think it is useful to report our results based on EW
leading-order calculations also for the case of

√
s = 50TeV.

1However, naively, one can expect that, since the charged resonances considered in this study are of the
SSM type and have only suppressed couplings to the SM gauge bosons, corrections to the EW leading-order
calculations presented in the manuscript might be less significant than those reported in [5] for the W W

production process.
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4.1 Selection strategy and reach

We consider the fully hadronic final state µ+µ− → (W → jj)(X → jj). The SM W decay
products, as a consequence of the large Lorentz boost, are emitted very collimated, and
will be mostly collected in a single jet.2

We thus require at least 3 hard jets in the central region, with sufficient separation
from each other:

pT j > 30 GeV , |ηj | < 2.5 , ∆Rjj > 0.4 , (4.2)

where ∆Rjj =
√
∆ϕ2

jj +∆η2
jj denotes the angular separation between two jets. We also

assume a detection efficiency of 70% for each jet in this acceptance region.
Signal and background events are simulated with MadGraph5 [18]. Events are then

passed to Pythia8 [21] for showering. Jets are clustered with Fastjet [22] by using an anti-
kt algorithm with cone size R = 0.4. We also apply a smearing to the jet 4-momenta, follow-
ing the Delphes [23] default card, in order to minimally take into account detector effects.3

The SM background, which we find to be of the order of a few fb in the acceptance
region, is given mainly by events with jets emitted by the radiation of an s-channel pho-
ton, where the third jet is produced by a gluon radiated from a quark. A subdominant
background component consists of jets from WW production, while the background con-
tribution from tt̄ events is almost negligible.

We apply a simple strategy to identify the jets coming from the X decays, and conse-
quently to reconstruct the heavy charged resonance. We observe (cfr. figure 3) that in the
case of heavier X resonances, the jets from the X are mostly emitted back-to-back and have
a large ∆R separation; for lighter X, instead, they tend to be collimated and closer. As
shown in figure 3, in the case of heavy X resonances, mX >

√
s/2, the two jets emitted by

the X decays have a large ∆R separation. For the majority of the events, this separation is
the largest one among the ∆R’s of the three pT -leading jets. For lighter X, instead, the two
emitted jets are collimated and closer. In this case, for most of the events, their separation
is the smallest one. We thus consider the three ∆R separations among the three pT -leading
jets and, for mX ≤

√
s/2, we identify the two jets from the X by assuming that they are

those with the smallest separation (consequently the third remaining jet is identified with
the W jet), while, for mX >

√
s/2, the two X jets are identified with those with the largest

separation (the third remaining jet constitutes the hadronically decayed W ).
In order to reduce the background and to obtain a clean reconstruction of the X reso-

nance, we then consider a cut on the invariant mass of the reconstructed W boson (MW ):

50GeV < MW < 110GeV . (4.3)

2The fraction of resolved jets from the W (with ∆R > 0.4) becomes non negligible, reaching values of
the order of 18%, only for the heaviest X cases, near the kinematic limit mX ≈

√
s. For these limit values,

a slight modification to the signal selection strategy could be applied in order to include these events and
improve the sensitivity.

3According to studies on the expected performance of a future muon collider, even better detector
performances, than those considered in this analysis, can be envisaged [24]. However, we prefer to remain
conservative in our predictions.
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Figure 3. From Monte Carlo truth: signal event distributions (normalized to unit area) in the ∆R

separation between two jets: between the two jets coming from the X decays (in red), between the
single jet from the W decay and one of the two jets from the X decay (the two histograms in blue).
We consider

√
s = 30TeV. The plot on the left refers to a lighter X scenario, with mX = 10TeV,

the plot on the right to a heavier case with mX = 25TeV. The middle plot refers to an intermediate
case with mX =

√
s/2 = 15TeV.

The efficiencies of this W and X reconstruction strategy range from 98% for the lightest X

values to about 40% for mX ≃
√

s/2 in the lower X mass case, and from about 67% to 90%
in the case of heavier X. Instead, the background is substantially reduced to negligible
levels (cfr. table 1, which shows the cut flow of the cross sections). The drop in sensitivity
for mX ≃

√
s/2 (which will reflect in a slight deficit on the final reach for this region)

is due to the lower reconstruction efficiency of the X and W resonances for this specific
kinematic configuration, as evident from the central plot in figure 3: for mX ≃

√
s/2, the

∆R separations between the two jets from the X and between one of the X jet and the
single jet from the W tend to overlap, so that their distinction becomes less efficient. The
sensitivity in this specific region can be improved by exploiting different reconstruction
strategies. The reconstruction strategy based on the ∆R separation we apply is conser-
vative. More refined techniques, indeed, could be also applied, which we leave for future
investigation. For example, one could identify the different jets origin by analyzing the
invariant mass and structures of the final state jets or of their combinations. We prefer,
however, to rely on the simple strategy described above, since it shows already good effi-
ciencies and, moreover, it is much less dependent on still-unknown detector performance
details and on yet-to-be-tuned modeling of jet showering effects.

Figure 4 shows the W and the X invariant mass distributions, at a 30 TeV muon
collider, for the signals of an effective W ′ resonance in two cases corresponding to a lighter
(mX = 10TeV) and a heavier (mX = 25TeV) X scenario, and for the background. The
MX distributions are shown before, in dashed lines, and after, in continuous thick lines,
the cut on the reconstructed W invariant mass, eq. (4.3). The analysis described above
can be applied as well to the case of the charged component of the MDM bound state 1s3.
The corresponding MX invariant mass distribution, at a 30 TeV muon collider, is shown in
figure 5 together with the background distribution, before and after the cut on MW .4 It is

4Note that the small peak in dashed blue line around 10 TeV in figure 5, as also the peak in dashed green
in the right plot of figure 4 around 15 TeV, are generated by a small fraction of signal events for which the
X and W reconstruction fails. More specifically, for a small number of signal events, the W is non-correctly
reconstructed and it is found to have a mass typically smaller than the real W mass; for the same events,
the X is non-correctly reconstructed as well, generating a peak at a lower mass. This small peak disappears
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√
s = 10 TeV accept. W reco.

mX (TeV)

5 4.66 1.94

6 3.63 1.19

7 2.69 2.14

8 1.82 1.67

9 0.939 0.897

9.9 0.177 0.152

Z/γ∗ → jets 1.95 ·10−3 1.49 [1.26] ·10−4

V V → jets 0.077 ·10−3 0.27 [0.58] ·10−4

Total
background 2.03 ·10−3 1.76 [1.84] ·10−4

√
s = 30 TeV accept. W reco.

mX (TeV)

5 20.3 19.9

10 7.53 6.23

15 4.65 1.93

20 2.97 1.97

25 1.52 1.40

28 0.640 0.603

29.9 0.151 0.137

Z/γ∗ → jets 0.246 ·10−3 1.84 [1.17] ·10−5

V V → jets 3.2 ·10−7 0.68 [1.6] ·10−7

Total
background 0.246 ·10−3 1.84 [1.18] ·10−5

√
s = 50 TeV accept. W reco.

mX (TeV)

5 49.8 49.6

10 15.2 14.7

20 6.11 4.21

30 3.62 1.15

35 2.70 2.12

40 1.80 1.64

45 0.937 0.874

49.9 0.146 0.132

Z/γ∗ → jets 9.10 ·10−5 6.60 [3.82] ·10−6

V V → jets < 1 ·10−7 < 1 ·10−8

Total
background 9.10 ·10−5 6.60 [3.82] ·10−6

Table 1. Cross section values (in pb) for signal (assuming gX = g2) and background, in the
acceptance region, and after the reconstruction of the W boson, including the cut in eq. (4.3). V

denotes a SM weak gauge boson, V ≡ Z, W, γ∗. For the background, the values on the third column
refer to those following the reconstruction strategy for heavier [lighter] X resonances.
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Figure 4. Event distributions, at a 30 TeV muon collider with an integrated luminosity of 100 fb−1,
for the signals of an effective W ′ of 10 and of 25 TeV, with a coupling gX = 0.01g2, and for the
background, resulting from the two cases of a lighter and a heavier X selection strategy. Plot on
the left: invariant mass distribution of the reconstructed W boson. Plot on the right: invariant
mass distribution of the reconstructed X resonance. The signal and background distributions are
shown before (in dashed lines) and after (continuous thick lines) the cut on the invariant mass of
the reconstructed W boson, eq. (4.3).
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lines) the cut on the invariant mass of the reconstructed W boson, eq. (4.3). The plot shows the
event distribution at a 30 TeV muon collider with an integrated luminosity of 100 fb−1.

evident from figures 4 and 5 how, after the complete signal selection strategy, the 1s3 and
the effective W ′ resonances are clearly distinguishable from the background.

The final reach of our analysis on a generic X charged resonance is shown in figure 6.
We have estimated the statistical significance as S/

√
S + B, with S (B) denoting the signal

(background) number of events. We indicate the 5σ discovery and the 2σ exclusion reach for
a 10, 30 and a 50 TeV muon collider with different collected integrated luminosities, up to
the maximum achievable value, L = 10 (

√
s

10 TeV)2 ab−1 [9].5 The MuCol can probe with this

once the cut on the W invariant mass is applied.
5The reported reach does not include systematic errors. By including conservatively a systematic un-

certainty of 10% [24] on both the signal and the background, we estimate that the sensitivities to the gX

coupling decrease by no more than 5% compared to the values shown in figure 6. Note that, in general, the
search channel and the strategy considered in this study, enjoying a very high signal-to-background ratio,
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(black) and 50 TeV (green) MuCol with a collected integrated luminosity of 1 fb−1 (dotted curves),
100 fb−1 (dashed) and for the maximum achievable luminosity (continuous curves).

analysis in the associated WX channel, charged X resonances up to mass values close to the
center-of-mass energy, and for couplings as small as 10−2g2, 10−3g2 and 10−3 − 10−4g2 for√

s =10, 30 and 50 TeV respectively. Furthermore, a W ′ in the SSM scenario, corresponding
to the case gX/g2 = 1, can be discovered at the very early stage of running by a muon
collider. We find that with just 50 pb−1 of integrated luminosity, a SSM W ′ with a mass up
to 9, 28 and 46 TeV can be discovered by the MuCol with

√
s = 10, 30 and 50 TeV respectively.

This marks an unprecedented level for a direct search. For comparison, the efficiency that
can be achieved in a direct search for a heavy resonance at the future 100 TeV proton-proton
collider, FCC-hh [25], is about one-to-two orders of magnitude lower than the efficiency of
the proposed search at a 10 TeV muon collider (cfr. [26, 27]).

In the case of the MDM bound state, we find the following expected reach for a 5-
plet MDM 1s3 charged bound state of 28 TeV: it can be excluded with about 34 fb−1 and
discovered with 210 fb−1 by a 30 TeV muon collider. This muon collider reach is even higher
for larger collision energies and/or mass values lower than 28 TeV. That is, for

√
s/m1s3 ≳

1.07, the values we indicate represents a conservative estimate of the MuCol reach on a
5-plet MDM bound state of mass m1s3 . The reach found in this paper on the 5-plet MDM
is significantly more efficient than the reach of WIMP searches based on missing-mass
and disappearing tracks signatures, which would be able to test the 5-plet target only for√

s ≳ 30 ÷ 50TeV and a large amount of integrated luminosity, L ≳ 2 ÷ 100 ab−1 [6, 7].
Even lower sensitivities are expected from mono-X searches, which would need very high
collision energies, around 100 TeV, in order to reach the 5-plet target [9].

5 Conclusions

In this letter we have proposed a new channel and strategy to probe directly heavy charged
resonances at a future multi-TeV muon collider: the associated production of the charged
new state with a SM W. The projected sensitivities of the MuCol in the channel are

are little affected by systematics.
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shown in figure 6 and indicate that a charged resonance of the SSM W ′ type6 can be
discovered up to multi-TeV mass values close to the beam-colliding energy, and for very
small couplings with the SM fermions, of the order of 103 − 104 times smaller than the
SM weak coupling. This sensitivity level would be unprecedented for a direct search.
Furthermore, the channel offers a very efficient and alternative way to probe the WIMP
scenario for the special case of MDM in the 5-plet EW representation, by allowing the
direct detection of the charged component of the MDM bound state. A MDM Majorana
5-plet bound state can be excluded with about 34 fb−1 and discovered with 210 fb−1 by a
30 TeV MuCol. This reach on the WIMP 5-plet thermal target is much higher than those
of mono-X, missing-mass and disappearing tracks signatures.
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