We construct a three-parameter family of contact metric structures on the unit tangent sphere bundle T1M of a Riemannian manifold M and we study some of their special properties related to the Levi-Civita connection. More precisely, we give the necessary and sufficient conditions for a constructed contact metric structure to be K-contact, Sasakian, to satisfy some variational conditions or to define a strongly pseudo-convex CR-structure. The obtained results generalize classical theorems on the standard contact metric structure of T1M.

G-natural contact metrics on unit tangent sphere bundles

CALVARUSO, Giovanni;
2006-01-01

Abstract

We construct a three-parameter family of contact metric structures on the unit tangent sphere bundle T1M of a Riemannian manifold M and we study some of their special properties related to the Levi-Civita connection. More precisely, we give the necessary and sufficient conditions for a constructed contact metric structure to be K-contact, Sasakian, to satisfy some variational conditions or to define a strongly pseudo-convex CR-structure. The obtained results generalize classical theorems on the standard contact metric structure of T1M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/100319
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact