We completely classify three-dimensional homogeneous Lorentzian manifolds,equipped with Einstein-like metrics. Similarly to the Riemannian case (E. Abbena et al., Simon Stevin Quart J Pure Appl Math 66:173–182, 1992), if (M, g) is a three-dimensional homogeneous Lorentzian manifold, the Ricci tensor of (M, g) being cyclic-parallel (respectively,a Codazzi tensor) is related to natural reductivity (respectively, symmetry) of (M, g). However, some exceptional examples arise.

Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds

CALVARUSO, Giovanni
2007-01-01

Abstract

We completely classify three-dimensional homogeneous Lorentzian manifolds,equipped with Einstein-like metrics. Similarly to the Riemannian case (E. Abbena et al., Simon Stevin Quart J Pure Appl Math 66:173–182, 1992), if (M, g) is a three-dimensional homogeneous Lorentzian manifold, the Ricci tensor of (M, g) being cyclic-parallel (respectively,a Codazzi tensor) is related to natural reductivity (respectively, symmetry) of (M, g). However, some exceptional examples arise.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/100321
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 5
social impact