The Rab-interacting lysosomal protein (RILP) has been identified as an effector for the small GTPases Rab7 and Rab34. It has been demonstrated that Rab7 and RILP are key proteins for the biogenesis of lysosomes and phagolysosomes. Indeed, expression of dominant negative mutants of Rab7 or of the C-terminal half of RILP impairs biogenesis and function of these organelles. In this study we have isolated, using the yeast two-hybrid system, the EAP30/SNF8/VPS22 subunit of the ESCRT-II complex as a RILP interacting protein. We demonstrated that VPS22 interacts with the N-terminal half of RILP. The interaction data obtained with the two-hybrid system were confirmed by co-immunoprecipitation. In addition, confocal immunofluorescence revealed colocalization of GFP-RILP and HA-VPS22. These data suggest that RILP could have a role in the biogenesis of multivesicular bodies.
RILP interacts with the VPS22 component of the ESCRT-II complex
SPINOSA, MARIA RITA;DE LUCA, AZZURRA;BUCCI, Cecilia
2006-01-01
Abstract
The Rab-interacting lysosomal protein (RILP) has been identified as an effector for the small GTPases Rab7 and Rab34. It has been demonstrated that Rab7 and RILP are key proteins for the biogenesis of lysosomes and phagolysosomes. Indeed, expression of dominant negative mutants of Rab7 or of the C-terminal half of RILP impairs biogenesis and function of these organelles. In this study we have isolated, using the yeast two-hybrid system, the EAP30/SNF8/VPS22 subunit of the ESCRT-II complex as a RILP interacting protein. We demonstrated that VPS22 interacts with the N-terminal half of RILP. The interaction data obtained with the two-hybrid system were confirmed by co-immunoprecipitation. In addition, confocal immunofluorescence revealed colocalization of GFP-RILP and HA-VPS22. These data suggest that RILP could have a role in the biogenesis of multivesicular bodies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.