Let $1\leq p<+\infty$ or $p=0$ and let $A=(a_n)_n$ be an increasing sequence of strictly positive weights on $I$. Let $F$ be a Fréchet space. It is proved that if $\lambda _p(A)$ satisfies the density condition of Heinrich and a certain condition $(C_t)$ holds, then the (LF)-space $LB_i(\lambda _p(A),F)$ is a topological subspace of $L_b(\lambda _p(A),F)$. It is also proved that these conditions are necessary provided $F=\lambda _q(A)$ or $F$ contains a complemented copy of $l_q$ with $1<p\leq q <+\infty$.

Projective descriptions of the (LF)-spaces of type $LB(lambda_p(A),F)$

ALBANESE, Angela Anna
2003-01-01

Abstract

Let $1\leq p<+\infty$ or $p=0$ and let $A=(a_n)_n$ be an increasing sequence of strictly positive weights on $I$. Let $F$ be a Fréchet space. It is proved that if $\lambda _p(A)$ satisfies the density condition of Heinrich and a certain condition $(C_t)$ holds, then the (LF)-space $LB_i(\lambda _p(A),F)$ is a topological subspace of $L_b(\lambda _p(A),F)$. It is also proved that these conditions are necessary provided $F=\lambda _q(A)$ or $F$ contains a complemented copy of $l_q$ with $1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/102075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact