We propose a method for filling arbitrarily wide gaps in deterministic time series. Crucial to the method is the ability to apply Takens’ theorem in order to reconstruct the dynamics underlying the time series. We introduce a functional to evaluate the degree of compatibility of a filling sequence of data with the reconstructed dynamics. An algorithm for finding highly compatible filling sequences with a reasonable computational effort is then discussed.

Filling gaps in chaotic time series

PAPARELLA, Francesco
2005-01-01

Abstract

We propose a method for filling arbitrarily wide gaps in deterministic time series. Crucial to the method is the ability to apply Takens’ theorem in order to reconstruct the dynamics underlying the time series. We introduce a functional to evaluate the degree of compatibility of a filling sequence of data with the reconstructed dynamics. An algorithm for finding highly compatible filling sequences with a reasonable computational effort is then discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/102647
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact