The strong coupling limits of the integrable semi-discrete and fully discrete nonlinear Schrödinger systems are studied by using the Hirota bilinear method. The determinant solutions (in both infinite and finite lattice cases) for the strong coupling limits of semi-discrete and fully discrete nonlinear Schrödinger systems are obtained using a determinant technique. The vector generalizations of the strong coupling limits of semi-discrete and fully discrete nonlinear Schrödinger systems are also presented. The Pfaffian solutions for vector systems are obtained using the Pfaffian technique.

Determinant and Pfaffian solutions of the strong coupling limit of integrable discrete NLS systems

PRINARI, Barbara
2008-01-01

Abstract

The strong coupling limits of the integrable semi-discrete and fully discrete nonlinear Schrödinger systems are studied by using the Hirota bilinear method. The determinant solutions (in both infinite and finite lattice cases) for the strong coupling limits of semi-discrete and fully discrete nonlinear Schrödinger systems are obtained using a determinant technique. The vector generalizations of the strong coupling limits of semi-discrete and fully discrete nonlinear Schrödinger systems are also presented. The Pfaffian solutions for vector systems are obtained using the Pfaffian technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/103069
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact