As is well--known, the Fr\'{e}chet--Hoeffding bounds are the best--possible for both copulas andquasi--copulas: for every (quasi--)copula $Q$, $\max\{x+y-1,0\}\le Q(x,y)\le \min\{x,y\}$ for all $x,y\in\uint$. Sharper bounds hold when the (quasi--)copulas take prescribed values, \eg, along their diagonal or horizontal resp.\ vertical sections. Here we pursue two goals: first, we investigate construction methods for (quasi--)copulas with a given sub--diagonal section, \ie, with prescribed values along the straight line segment joining the points $(x_0,0)$ and $(1,1-x_0)$ for $x_0\in\opint{0,1}$. Then, we determine the best--possible bounds for sets of quasi--copulas with a given sub--diagonal section.

Quasi--copulas with a given sub--diagonal section

SEMPI, Carlo
2008-01-01

Abstract

As is well--known, the Fr\'{e}chet--Hoeffding bounds are the best--possible for both copulas andquasi--copulas: for every (quasi--)copula $Q$, $\max\{x+y-1,0\}\le Q(x,y)\le \min\{x,y\}$ for all $x,y\in\uint$. Sharper bounds hold when the (quasi--)copulas take prescribed values, \eg, along their diagonal or horizontal resp.\ vertical sections. Here we pursue two goals: first, we investigate construction methods for (quasi--)copulas with a given sub--diagonal section, \ie, with prescribed values along the straight line segment joining the points $(x_0,0)$ and $(1,1-x_0)$ for $x_0\in\opint{0,1}$. Then, we determine the best--possible bounds for sets of quasi--copulas with a given sub--diagonal section.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/103219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact