Despite the fact that symmetric Toeplitz matrices can have arbitrary eigenvalues, the numerical construction of such a matrix having prescribed eigenvalues remains to be a challenge. A two-step method using the continuation idea is proposed in this paper. The first step constructs a centro-symmetric Jacobi matrix with the prescribed eigenvalues in finitely many steps. The second step uses the Cayley transform to integrate flows in the linear subspace of skew-symmetric and centro-symmetric matrices. No special geometric integrators are needed. The convergence analysis is illustrated for the case of n = 3. Numerical examples are presented.

“The Cayley Method and the Inverse Eigenvalue Problem for Toeplitz Matrices”

SGURA, Ivonne
2002-01-01

Abstract

Despite the fact that symmetric Toeplitz matrices can have arbitrary eigenvalues, the numerical construction of such a matrix having prescribed eigenvalues remains to be a challenge. A two-step method using the continuation idea is proposed in this paper. The first step constructs a centro-symmetric Jacobi matrix with the prescribed eigenvalues in finitely many steps. The second step uses the Cayley transform to integrate flows in the linear subspace of skew-symmetric and centro-symmetric matrices. No special geometric integrators are needed. The convergence analysis is illustrated for the case of n = 3. Numerical examples are presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/103724
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact