In coastal marine ecosystems, predation might affect spatial distribution and population dynamics of benthic assemblages. Here, by means of experimental exclusion of potential predators, we compared the effects of epibenthic predation on metazoan meiofaunal assemblages on soft and rocky substrates. Different patterns of abundance were observed in uncaged versus caged plots, across habitats. In caged soft substrates, the abundance of Nematodes, Copepods and Polychaetes increased by 56, 45, 57%, respectively, in the first 3 months. An increase in the number of meiofaunal taxa was also observed. The exclusion of predators from rocky substrates showed less clear patterns. It did not affect the number of taxa while a decrease in meiofaunal abundance was observed. Our results suggest that the exclusion of epibenthic predators had clear effect on total metazoan meiofaunal abundance and on the number of taxa, only in soft bottoms. The different impact of predation across habitats can be potentially explained by differences in terms of spatial variability and substrate complexity. We estimated that, coarsely, more than 75% of total metazoan meiofaunal production can be channeled to higher trophic levels through predation on soft-bottoms. Among meiofaunal taxa, Polychaetes and Nematodes provided the major contribution to benthic energy transfers. These results suggest the trophic relevance of metazoan meiofauna in coastal food webs and claim for the refinement of further experiments for the quantification of its role in different ecological systems.
Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates
FRASCHETTI, Simonetta
2007-01-01
Abstract
In coastal marine ecosystems, predation might affect spatial distribution and population dynamics of benthic assemblages. Here, by means of experimental exclusion of potential predators, we compared the effects of epibenthic predation on metazoan meiofaunal assemblages on soft and rocky substrates. Different patterns of abundance were observed in uncaged versus caged plots, across habitats. In caged soft substrates, the abundance of Nematodes, Copepods and Polychaetes increased by 56, 45, 57%, respectively, in the first 3 months. An increase in the number of meiofaunal taxa was also observed. The exclusion of predators from rocky substrates showed less clear patterns. It did not affect the number of taxa while a decrease in meiofaunal abundance was observed. Our results suggest that the exclusion of epibenthic predators had clear effect on total metazoan meiofaunal abundance and on the number of taxa, only in soft bottoms. The different impact of predation across habitats can be potentially explained by differences in terms of spatial variability and substrate complexity. We estimated that, coarsely, more than 75% of total metazoan meiofaunal production can be channeled to higher trophic levels through predation on soft-bottoms. Among meiofaunal taxa, Polychaetes and Nematodes provided the major contribution to benthic energy transfers. These results suggest the trophic relevance of metazoan meiofauna in coastal food webs and claim for the refinement of further experiments for the quantification of its role in different ecological systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.