A novel technique, based on low intensity ultrasonic wave propagation, has been applied to investigate the gelation of a waxy crude oil, caused by the crystallization of paraffin fractions as the temperature reduces below a threshold value, called WAT (wax appearance temperature). Because this phenomenon significantly affects the rheological behavior of crude oils, the knowledge of the conditions under which it occurs, during oil storage and/or transportation, is a topical issue in the oil industry. In this work, an ultrasonic equipment has been set up, able to propagate longitudinal waves in the MHz range and to display in real time the behavior of ultrasonic velocity and attenuation when the crude oil sample is subjected to heating and cooling cycles. When the ultrasonic probes alternatively rotate as parallel plates of a conventional rheometer, low intensity longitudinal waves (in the megahertz range), and shear oscillations (in the hertz range) are simultaneously applied on the sample, thus widely broadening the frequency range of investigation. On cooling, the crystallization of paraffin fractions and the consequent formation of a network structure in the oil matrix are responsible of the development and growth of the crude oil elastic response, which becomes dominant over the viscous response. This process can be reliably detected by dynamic mechanical analysis and by ultrasonic analysis through the increase of the storage modulus G′ and longitudinal velocity, respectively. The growth and further association between wax crystals causes a dissipation of acoustic energy, which is indicated by the increase of the wave attenuation. The combination of rheological and ultrasonic methods has provided a better insight both on the gel transition of crude oils and the viscoelastic behavior of gelled samples. The ultrasonic wave propagation has demonstrated to be a powerful tool for monitoring the sol–gel transition in waxy crude oils. Finally, the effect of ultrasonic waves with different intensity on the gel build-up has been also evaluated. A reduction of the gel strength with increasing wave intensity has been observed and the recovery of elastic response after removing ultrasonic irradiation has been monitored.

Gelation of waxy crude oils by ultrasonic and dynamic mechanical analysis

LIONETTO, Francesca;MAFFEZZOLI, Alfonso
2007-01-01

Abstract

A novel technique, based on low intensity ultrasonic wave propagation, has been applied to investigate the gelation of a waxy crude oil, caused by the crystallization of paraffin fractions as the temperature reduces below a threshold value, called WAT (wax appearance temperature). Because this phenomenon significantly affects the rheological behavior of crude oils, the knowledge of the conditions under which it occurs, during oil storage and/or transportation, is a topical issue in the oil industry. In this work, an ultrasonic equipment has been set up, able to propagate longitudinal waves in the MHz range and to display in real time the behavior of ultrasonic velocity and attenuation when the crude oil sample is subjected to heating and cooling cycles. When the ultrasonic probes alternatively rotate as parallel plates of a conventional rheometer, low intensity longitudinal waves (in the megahertz range), and shear oscillations (in the hertz range) are simultaneously applied on the sample, thus widely broadening the frequency range of investigation. On cooling, the crystallization of paraffin fractions and the consequent formation of a network structure in the oil matrix are responsible of the development and growth of the crude oil elastic response, which becomes dominant over the viscous response. This process can be reliably detected by dynamic mechanical analysis and by ultrasonic analysis through the increase of the storage modulus G′ and longitudinal velocity, respectively. The growth and further association between wax crystals causes a dissipation of acoustic energy, which is indicated by the increase of the wave attenuation. The combination of rheological and ultrasonic methods has provided a better insight both on the gel transition of crude oils and the viscoelastic behavior of gelled samples. The ultrasonic wave propagation has demonstrated to be a powerful tool for monitoring the sol–gel transition in waxy crude oils. Finally, the effect of ultrasonic waves with different intensity on the gel build-up has been also evaluated. A reduction of the gel strength with increasing wave intensity has been observed and the recovery of elastic response after removing ultrasonic irradiation has been monitored.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/109183
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 45
social impact