We report on the different behavior of electron and ion currents recorded by a Faraday cup in a plasma bunch generated via laser ablation. An excimer laser was employed to irradiate a Ge target. The current signals were recorded equipping the Faraday cup collector by a set of diaphragms. We found that the electron time-of-flight spectra were fairly similar to the ion ones, but the collected charge yield for electrons was up to 200 times larger than the corresponding ion yield. We ascribed such a discrepancy to the different cup collection efficiency for ions and electrons forming the plasma which was heavily influenced by the plume geometry, the energy of the particles, as well as the diaphragm size. Our findings would suggest that the overall electron charge “tended” to be collected, unlike the ion charge which scaled upon the collection solid angle.
ASIMMETRY IN ELECTRON AND ION CHARGE COLECTION IN A DRIFTING PLASMA BUNCH
LORUSSO, ANTONELLA;NASSISI, Vincenzo
2007-01-01
Abstract
We report on the different behavior of electron and ion currents recorded by a Faraday cup in a plasma bunch generated via laser ablation. An excimer laser was employed to irradiate a Ge target. The current signals were recorded equipping the Faraday cup collector by a set of diaphragms. We found that the electron time-of-flight spectra were fairly similar to the ion ones, but the collected charge yield for electrons was up to 200 times larger than the corresponding ion yield. We ascribed such a discrepancy to the different cup collection efficiency for ions and electrons forming the plasma which was heavily influenced by the plume geometry, the energy of the particles, as well as the diaphragm size. Our findings would suggest that the overall electron charge “tended” to be collected, unlike the ion charge which scaled upon the collection solid angle.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.