In various environmental studies multivariate spatial–temporal correlated data are involved, hence appropriate techniques to enhance space–time prediction are in great demand. An extension of multivariate spatial geostatistics to a spatio-temporal domain might be a straightforward task; nevertheless, up to now, little has been done in a multivariate spatial–temporal context. Modeling and prediction techniques are described for a multivariate space–time random field, moreover some theoretical and practical aspects are investigated for a bivariate space–time random field through a case study.

Modeling and prediction of multivariate space-time random fields

DE IACO, Sandra;PALMA, Monica;POSA, Donato
2005-01-01

Abstract

In various environmental studies multivariate spatial–temporal correlated data are involved, hence appropriate techniques to enhance space–time prediction are in great demand. An extension of multivariate spatial geostatistics to a spatio-temporal domain might be a straightforward task; nevertheless, up to now, little has been done in a multivariate spatial–temporal context. Modeling and prediction techniques are described for a multivariate space–time random field, moreover some theoretical and practical aspects are investigated for a bivariate space–time random field through a case study.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/300267
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact