The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases I and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by Go6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G66976 and PD098059, or G66976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G66976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC-epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC-epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC-r pathways to induce c-Fos protein and HeLa cell proliferation.

Activation of P2Y2 receptor induces C-Fos protein through a pathway Involving Mitogen-Activated Protein Kinase and phosphoinositide 3-kinases in HeLa cells.

MUSCELLA, Antonella;STORELLI, Carlo;MARSIGLIANTE, Santo
2003-01-01

Abstract

The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases I and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by Go6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G66976 and PD098059, or G66976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G66976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC-epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC-epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC-r pathways to induce c-Fos protein and HeLa cell proliferation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/300702
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 42
social impact