Some experimental tests were performed studying the flow of water thought an orifice, in order to investigate the onset of the various cavitation structures and the effects of cavitation at different cavitation numbers and temperature. Different flow rates have been tested for different values of temperature. The results show that the cavitation originates at the inlet of the flow constriction area. It grows intensively and transforms into a cavitating cloud. As flow rate was increased, it was observed that the cavitating cloud travels downstream of the hole oscillating around the exit position and it is connected to the hole inlet through a sheet having a complex turbulent structures. The decrease in the cavitation number causes a corresponding increase of the width of the cavitating area especially in proximity of the critical cavitation number. In particular, it was observed that the critical cavitation number increases as the temperature increase. The behavior of the cavitation phenomenon can be related to the pressure fluctuations measured downstream of the orifice; a Fourier Transform of the downstream pressure signal was performed. The development of the cavitation phenomenon for lower cavitation numbers affects the pressure frequency components, related to the impacts due to vapor bubbles implosions. Finally, soma numerical simulations have been performed; the simulation results were compared with the experimental ones.

Experimental Study Of Thermal Cavitation In An Orifice

DE GIORGI, Maria Grazia;FICARELLA, Antonio;CHIARA, FABIO FILIPPO
2006-01-01

Abstract

Some experimental tests were performed studying the flow of water thought an orifice, in order to investigate the onset of the various cavitation structures and the effects of cavitation at different cavitation numbers and temperature. Different flow rates have been tested for different values of temperature. The results show that the cavitation originates at the inlet of the flow constriction area. It grows intensively and transforms into a cavitating cloud. As flow rate was increased, it was observed that the cavitating cloud travels downstream of the hole oscillating around the exit position and it is connected to the hole inlet through a sheet having a complex turbulent structures. The decrease in the cavitation number causes a corresponding increase of the width of the cavitating area especially in proximity of the critical cavitation number. In particular, it was observed that the critical cavitation number increases as the temperature increase. The behavior of the cavitation phenomenon can be related to the pressure fluctuations measured downstream of the orifice; a Fourier Transform of the downstream pressure signal was performed. The development of the cavitation phenomenon for lower cavitation numbers affects the pressure frequency components, related to the impacts due to vapor bubbles implosions. Finally, soma numerical simulations have been performed; the simulation results were compared with the experimental ones.
2006
9780791842485
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/301326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact