Asymmetric binary nanocrystals (BNCs), comprising one c-axis elongated anatase TiO2 section and one gamma-Fe2O3 spherical domain attached together, are synthesized by heterogeneous nucleation of iron oxide onto the longitudinal facets of TiO2 nanorods in a ternary surfactant mixture. The topologically controlled composition of the BNCs is ascertained by a combination of powder X-ray diffraction, Raman and Mossbauer spectroscopy, high-angle annular dark-field imaging, and high-resolution transmission electron microscopy lattice fringe mapping, while their size-dependent magnetic behavior is demonstrated by ac susceptibility measurements. The heteroepitaxial growth proceeds through a mechanism never observed before for colloidal nanoheterostructures: the two domains share a restricted and locally curved junction region, which accommodates efficiently the interfacial strain and retards the formation of misfit dislocations. It is believed that these BNCs, which combine the properties of two technologically relevant oxide materials, can pave the way to reinforced applications in several fields of nanoscience, such as in photocatalysis, in malignant cell treatments, and in nanocrystal assembly.

Seeded Growth of Asymmetric Binary Nanocrystals Made of a Semiconductor TiO2 Rod-like Section and a Magnetic γ-Fe2O3 Spherical Domain

BUONSANTI, RAFFAELLA
Membro del Collaboration Group
;
COZZOLI, Pantaleo Davide
Membro del Collaboration Group
2006-01-01

Abstract

Asymmetric binary nanocrystals (BNCs), comprising one c-axis elongated anatase TiO2 section and one gamma-Fe2O3 spherical domain attached together, are synthesized by heterogeneous nucleation of iron oxide onto the longitudinal facets of TiO2 nanorods in a ternary surfactant mixture. The topologically controlled composition of the BNCs is ascertained by a combination of powder X-ray diffraction, Raman and Mossbauer spectroscopy, high-angle annular dark-field imaging, and high-resolution transmission electron microscopy lattice fringe mapping, while their size-dependent magnetic behavior is demonstrated by ac susceptibility measurements. The heteroepitaxial growth proceeds through a mechanism never observed before for colloidal nanoheterostructures: the two domains share a restricted and locally curved junction region, which accommodates efficiently the interfacial strain and retards the formation of misfit dislocations. It is believed that these BNCs, which combine the properties of two technologically relevant oxide materials, can pave the way to reinforced applications in several fields of nanoscience, such as in photocatalysis, in malignant cell treatments, and in nanocrystal assembly.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/327350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 153
social impact