Classical results of Pelczynski and of Zippin concerning bases in Banach spaces are extended to the Fréchet space setting; thus answering to a question posed by Kalton almost 40 years ago. Equipped with these results, we prove that a Fréchet space with a basis is reflexive (resp. Montel) if and only if every power bounded operator is mean ergodic (resp. uniformly ergodic). New techniques are developed and many examples in classical Fréchet spaces are exhibited.

Mean Ergodic operators in Fréchet spaces

ALBANESE, Angela Anna;
2009-01-01

Abstract

Classical results of Pelczynski and of Zippin concerning bases in Banach spaces are extended to the Fréchet space setting; thus answering to a question posed by Kalton almost 40 years ago. Equipped with these results, we prove that a Fréchet space with a basis is reflexive (resp. Montel) if and only if every power bounded operator is mean ergodic (resp. uniformly ergodic). New techniques are developed and many examples in classical Fréchet spaces are exhibited.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/327657
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 60
social impact