We show that all possible binary combinations of molecules from four different families of organics - a diamine derivative, N,N′-bis(3methylphenyl)-N,N′-diphenylbenzidine, an oxidiazole derivative, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, a substituted thiophene dioxide, 2,5-bis(trimethylsilyl thiophene)-1,1-dioxide, and poly(9-vinylcarbazole) - produce white or near-white emission. We suggest that this is due to exciplex formation, and that this is likely to be a general phenomenon for blends of blue-emitting aromatic organics. This implies that films of spin-coated blends of blue-emitting organics represent a general, simple, and cheap route to white-emitting organic light-emitting diodes.
White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode?
MAZZEO, MARCO;ANNI, Marco;GIGLI, Giuseppe;
2001-01-01
Abstract
We show that all possible binary combinations of molecules from four different families of organics - a diamine derivative, N,N′-bis(3methylphenyl)-N,N′-diphenylbenzidine, an oxidiazole derivative, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, a substituted thiophene dioxide, 2,5-bis(trimethylsilyl thiophene)-1,1-dioxide, and poly(9-vinylcarbazole) - produce white or near-white emission. We suggest that this is due to exciplex formation, and that this is likely to be a general phenomenon for blends of blue-emitting aromatic organics. This implies that films of spin-coated blends of blue-emitting organics represent a general, simple, and cheap route to white-emitting organic light-emitting diodes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.