We present a review of climate change projections over the Mediterranean region based on the most recent and comprehensive ensembles of global and regional climate change simulations completed as part of international collaborative projects. A robust and consistent picture of climate change over the Mediterranean emerges, consisting of a pronounced decrease in precipitation, especially in the warm season, except for the northern Mediterranean areas (e.g. the Alps) in winter. This drying is due to increased anticyclonic circulation that yields increasingly stable conditions and is associated with a northward shift of the Atlantic storm track. A pronounced warming is also projected, maximum in the summer season. Interannual variability is projected to mostly increase especially in summer, which, along with the mean warming, would lead to a greater occurrence of extremely high temperature events. The projections by the global and regional model simulations are generally consistent with each other at the broad scale. However, the precipitation change signal produced by the regional models shows substantial orographically-induced fine scale structure absent in the global models. Overall, these change signals are robust across forcing scenarios and future time periods, with the magnitude of the signal increasing with the intensity of the forcing. The intensity and robustness of the climate change signals produced by a range of global and regional climate models suggest that the Mediterranean might be an especially vulnerable region to global change.

Climate Change Projections for the Mediterranean Region

LIONELLO, Piero
2008-01-01

Abstract

We present a review of climate change projections over the Mediterranean region based on the most recent and comprehensive ensembles of global and regional climate change simulations completed as part of international collaborative projects. A robust and consistent picture of climate change over the Mediterranean emerges, consisting of a pronounced decrease in precipitation, especially in the warm season, except for the northern Mediterranean areas (e.g. the Alps) in winter. This drying is due to increased anticyclonic circulation that yields increasingly stable conditions and is associated with a northward shift of the Atlantic storm track. A pronounced warming is also projected, maximum in the summer season. Interannual variability is projected to mostly increase especially in summer, which, along with the mean warming, would lead to a greater occurrence of extremely high temperature events. The projections by the global and regional model simulations are generally consistent with each other at the broad scale. However, the precipitation change signal produced by the regional models shows substantial orographically-induced fine scale structure absent in the global models. Overall, these change signals are robust across forcing scenarios and future time periods, with the magnitude of the signal increasing with the intensity of the forcing. The intensity and robustness of the climate change signals produced by a range of global and regional climate models suggest that the Mediterranean might be an especially vulnerable region to global change.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/328897
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2374
  • ???jsp.display-item.citation.isi??? 2246
social impact