In the present paper, we introduce and study Beurling and Roumieu quasianalytic (and nonquasianalytic) wave front sets, $WF_*$, of classical distributions. In particular, we have the following inclusion $$ WF_\ast (u)\subset WF_\ast(Pu)\cup \Sigma, \quad u\in\D^\prime(\Omega), $$ where $\Omega$ is an open subset of $\R^n$, $P$ is a linear partial differential operator with coefficients in a suitable ultradifferentiable class, and $\Sigma$ is the characteristic set of $P$. Some applications are also investigated.

Quasianalytic wave front sets for solutions of linear partial differential operators

ALBANESE, Angela Anna;
2010-01-01

Abstract

In the present paper, we introduce and study Beurling and Roumieu quasianalytic (and nonquasianalytic) wave front sets, $WF_*$, of classical distributions. In particular, we have the following inclusion $$ WF_\ast (u)\subset WF_\ast(Pu)\cup \Sigma, \quad u\in\D^\prime(\Omega), $$ where $\Omega$ is an open subset of $\R^n$, $P$ is a linear partial differential operator with coefficients in a suitable ultradifferentiable class, and $\Sigma$ is the characteristic set of $P$. Some applications are also investigated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/336050
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact