A tensorial-expanded chaos collocation method is developed to take into account uncertainties on thermodynamic properties of complex organic substances. Precisely, we analyse the effect of uncertainties introduced by several thermodynamic models on the numerical results provided by a computational fluid dynamics solver for flows of molecularly complex gases close to saturation condition (dense gas flows). The tensorial-expanded chaos collocation method is used to perform both a priori and a posteriori tests on the output data generated by three popular thermodynamic models for dense gases with uncertain input parameters. A priori tests check the sensitivity of each equation of state to uncertain input data via some reference thermodynamic outputs, such as the saturation curve and the critical isotherm. A posteriori tests investigate how uncertainties propagate to the computed field properties and aerodynamic coefficients for a flow around an airfoil placed into a transonic dense gas stream.

Quantification of thermodynamic uncertainties in real-gas flows

CINNELLA, Paola;
2010-01-01

Abstract

A tensorial-expanded chaos collocation method is developed to take into account uncertainties on thermodynamic properties of complex organic substances. Precisely, we analyse the effect of uncertainties introduced by several thermodynamic models on the numerical results provided by a computational fluid dynamics solver for flows of molecularly complex gases close to saturation condition (dense gas flows). The tensorial-expanded chaos collocation method is used to perform both a priori and a posteriori tests on the output data generated by three popular thermodynamic models for dense gases with uncertain input parameters. A priori tests check the sensitivity of each equation of state to uncertain input data via some reference thermodynamic outputs, such as the saturation curve and the critical isotherm. A posteriori tests investigate how uncertainties propagate to the computed field properties and aerodynamic coefficients for a flow around an airfoil placed into a transonic dense gas stream.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/336205
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact