This paper is aimed at introducing an algebraic model for physical scales and units of measurement. This goal is achieved by means of the concept of “positive space” and its rational powers. Positive spaces are “semi-vector spaces” on which the group of positive real numbers acts freely and transitively through the scalar multiplication. Their tensor multiplication with vector spaces yields “scaled spaces” that are suitable to describe spaces with physical dimensions mathematically. We also deal with scales regarded as fields over a given background (e.g., spacetime).
An algebraic approach to physical scales
VITOLO, Raffaele
2010-01-01
Abstract
This paper is aimed at introducing an algebraic model for physical scales and units of measurement. This goal is achieved by means of the concept of “positive space” and its rational powers. Positive spaces are “semi-vector spaces” on which the group of positive real numbers acts freely and transitively through the scalar multiplication. Their tensor multiplication with vector spaces yields “scaled spaces” that are suitable to describe spaces with physical dimensions mathematically. We also deal with scales regarded as fields over a given background (e.g., spacetime).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.