Let (TM, G) and (T1M, ˜G ) respectively denote the tangent bundle and the unit tangent sphere bundle of a Riemannian manifold (M, g), equipped with arbitraryRiemannian g-natural metrics. After studying the geometry of the canonical projections π : (TM, G) → (M, g) and π1 : (T1M, ˜G) → (M, g), we give necessary and sufficient conditions for π and π1 to be harmonic morphisms. Some relevant classes of Riemannian g-natural metrics will be characterized in terms of harmonicity properties of the canonical projections. Moreover, we study the harmonicity of the canonical projection : (TM −{0}, G) → (T1M, ˜G ) with respect to Riemannian g-natural metrics G, ˜G of Kaluza–Klein type.

Harmonic morphisms and Riemannian geometry of tangent bundles

CALVARUSO, Giovanni;PERRONE, Domenico
2011-01-01

Abstract

Let (TM, G) and (T1M, ˜G ) respectively denote the tangent bundle and the unit tangent sphere bundle of a Riemannian manifold (M, g), equipped with arbitraryRiemannian g-natural metrics. After studying the geometry of the canonical projections π : (TM, G) → (M, g) and π1 : (T1M, ˜G) → (M, g), we give necessary and sufficient conditions for π and π1 to be harmonic morphisms. Some relevant classes of Riemannian g-natural metrics will be characterized in terms of harmonicity properties of the canonical projections. Moreover, we study the harmonicity of the canonical projection : (TM −{0}, G) → (T1M, ˜G ) with respect to Riemannian g-natural metrics G, ˜G of Kaluza–Klein type.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/342852
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact