In this work, a field effect transistor based on a deoxyguanosine derivative (a DNA base) is demonstrated. Our experiments on transport through the source and drain electrodes interconnected by self-assembled guanine ribbons (Gottarelli et al. Helv. Chim. Acta 1998, 81, 2078; Gottarelli et al. Chem. Eur. J. 2000, 6, 3242; Giorgi et al. Chem Eur. J. 2002, 8, 2143) suggest that these devices behave like p-channel MOSFETs, The devices exhibit a maximum voltage gain of 0.76. This prototype transistor represents a starting point toward the development of biomolecular electronic devices.
Field Effect Transistor based on a modified DNA base
MARUCCIO, Giuseppe;VISCONTI, Paolo;ARIMA, VALENTINA;D'AMICO, STEFANO;BIASCO, Adriana Lucia Angela;CINGOLANI, Roberto;RINALDI, Rosaria
2003-01-01
Abstract
In this work, a field effect transistor based on a deoxyguanosine derivative (a DNA base) is demonstrated. Our experiments on transport through the source and drain electrodes interconnected by self-assembled guanine ribbons (Gottarelli et al. Helv. Chim. Acta 1998, 81, 2078; Gottarelli et al. Chem. Eur. J. 2000, 6, 3242; Giorgi et al. Chem Eur. J. 2002, 8, 2143) suggest that these devices behave like p-channel MOSFETs, The devices exhibit a maximum voltage gain of 0.76. This prototype transistor represents a starting point toward the development of biomolecular electronic devices.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.