Renewable energies, especially energy from biomass, contribute to the sustainable development of the territory. Simultaneously, by using biomass to produce bioenergy, bioreproductive land is devoted to supply energy. As the bioreproductive land area on the European level is decreasing, bioenergy competes against other demands like the production of food, industrial resources or cultural goods and services, among others, thus the correct assessment of the available local potential is important for local and regional planning. Moreover, bioenergy system being a socio-ecological system requires integrated approaches for the evaluation of the factors, components and interactions of such a system, considering that agriculture presents one of the major drivers of the land use change and biodiversity loss. Therefore, this work was focused on the development of the approach for and on the assessment of biogas potentials to provide a support for decision-makers and bioenergy industry at a local scale. The approach exploits the spatial relations among territorial units (i.e., a contiguity analysis), and integrates time series of continuous and discrete data. It is based on the analytic hierarchy process (AHP) combined with GISbased analysis, and permitted to develop a territorial information system in support for biogas planning, perform analysis of feedstock for biogas from different sources potential and produce plausible scenarios for identification of biogas suitable territorial clusters; the analysis of the tradeoffs between the use of different local sources of the feedstock for biogas production are discussed as well.
Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion – Mediterranean case study
ZACCARELLI, NICOLA;ZURLINI, Giovanni
2011-01-01
Abstract
Renewable energies, especially energy from biomass, contribute to the sustainable development of the territory. Simultaneously, by using biomass to produce bioenergy, bioreproductive land is devoted to supply energy. As the bioreproductive land area on the European level is decreasing, bioenergy competes against other demands like the production of food, industrial resources or cultural goods and services, among others, thus the correct assessment of the available local potential is important for local and regional planning. Moreover, bioenergy system being a socio-ecological system requires integrated approaches for the evaluation of the factors, components and interactions of such a system, considering that agriculture presents one of the major drivers of the land use change and biodiversity loss. Therefore, this work was focused on the development of the approach for and on the assessment of biogas potentials to provide a support for decision-makers and bioenergy industry at a local scale. The approach exploits the spatial relations among territorial units (i.e., a contiguity analysis), and integrates time series of continuous and discrete data. It is based on the analytic hierarchy process (AHP) combined with GISbased analysis, and permitted to develop a territorial information system in support for biogas planning, perform analysis of feedstock for biogas from different sources potential and produce plausible scenarios for identification of biogas suitable territorial clusters; the analysis of the tradeoffs between the use of different local sources of the feedstock for biogas production are discussed as well.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.