Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

ALIFANO, Pietro;NASSISI, Vincenzo;SICILIANO, MARIA VITTORIA;TALA', ADELFIA;TREDICI, Salvatore Maurizio
2011-01-01

Abstract

Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/361953
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact