Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bac- terial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L- glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intrac- ellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen per- oxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a criti- cal step in the disease process during infections caused by this important human pathogen.

Glutamate utilization promotes meningococcal survival in vivo through avoidance of the neutrophil oxidative burst

TALA', ADELFIA;ALIFANO, Pietro;
2011-01-01

Abstract

Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bac- terial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L- glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intrac- ellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen per- oxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a criti- cal step in the disease process during infections caused by this important human pathogen.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/361970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact