We consider a chain of SU(2) 4 anyons with transitions to a topologically ordered phase state. For half-integer and integer indices of the type of strongly correlated excitations, we find an effective low-energy Hamiltonian that is an analogue of the standard Heisenberg Hamiltonian for quantum magnets. We describe the properties of the Hilbert spaces of the system eigenstates. For the Drinfeld quantum SU(2)k×SU(2)k doubles, we use numerical computations to show that the largest eigenvalues of the adjacency matrix for graphs that are extended Dynkin diagrams coincide with the total quantum dimensions for the levels k = 2, 3, 4, 5. We also formulate a hypothesis about the reason for the universal behavior of the system in the long-wave limit.

Chain of interacting SU(2)4 anyons and quantum SU(2)k×SU(2)k doubles

MARTINA, Luigi;
2011-01-01

Abstract

We consider a chain of SU(2) 4 anyons with transitions to a topologically ordered phase state. For half-integer and integer indices of the type of strongly correlated excitations, we find an effective low-energy Hamiltonian that is an analogue of the standard Heisenberg Hamiltonian for quantum magnets. We describe the properties of the Hilbert spaces of the system eigenstates. For the Drinfeld quantum SU(2)k×SU(2)k doubles, we use numerical computations to show that the largest eigenvalues of the adjacency matrix for graphs that are extended Dynkin diagrams coincide with the total quantum dimensions for the levels k = 2, 3, 4, 5. We also formulate a hypothesis about the reason for the universal behavior of the system in the long-wave limit.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/362188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact