Nanoclay dispersions in organic solvents are widely used in cosmetics for a variety of gels and creams, whose properties depend on the powder content and the processing method. The control of the shear applied during processing is therefore essential for achieving the required properties.This study demonstrates the utility of applying rheological measurements for characterizing cosmetic products based on nanoclays and relating their viscoelastic properties to end-use performances. In particular, a rheological characterization of bentonite dispersions in isododecane at different clay content and shear history is presented. For each inorganic content, both mixed samples and samples subjected to several calendering runs were studied. The effect of shear and clay content on the viscoelastic properties was investigated by a combination of oscillatory shear experiments under small-deformation conditions and by X-Ray diffraction. The tested samples showed a gel-like behaviour with a final structure depending on the applied shear stress. By increasing the inorganic content in the dispersion, a reduction in the gel stability to a further shear application was observed. Two models, developed for colloidal gels,were used to fit the rheological results enabling to evaluate the microstructure and the degree of dispersion of the tested samples and to relate the colloidal structure to the elastic properties
Rheological Characterization of concentrated nanoclay dispersions in an organic solvent
LIONETTO, Francesca;MAFFEZZOLI, Alfonso
2009-01-01
Abstract
Nanoclay dispersions in organic solvents are widely used in cosmetics for a variety of gels and creams, whose properties depend on the powder content and the processing method. The control of the shear applied during processing is therefore essential for achieving the required properties.This study demonstrates the utility of applying rheological measurements for characterizing cosmetic products based on nanoclays and relating their viscoelastic properties to end-use performances. In particular, a rheological characterization of bentonite dispersions in isododecane at different clay content and shear history is presented. For each inorganic content, both mixed samples and samples subjected to several calendering runs were studied. The effect of shear and clay content on the viscoelastic properties was investigated by a combination of oscillatory shear experiments under small-deformation conditions and by X-Ray diffraction. The tested samples showed a gel-like behaviour with a final structure depending on the applied shear stress. By increasing the inorganic content in the dispersion, a reduction in the gel stability to a further shear application was observed. Two models, developed for colloidal gels,were used to fit the rheological results enabling to evaluate the microstructure and the degree of dispersion of the tested samples and to relate the colloidal structure to the elastic propertiesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.