In many environmental sciences, the available information concern several correlated variables observed at some locations of the domain of interest and over a certain period of time. In this context, multivariate spatial-temporal data might exhibit an spatial anisotropy and a temporal trend. Then appropriate modeling and prediction techniques for multivariate spatial-temporal data are necessary. In this paper, a case study with an anisotropic space-time coregionalization model is discussed. Some critical steps of the fitting procedure are highlighted

Space-time multivariate analysis based on anisotropic covariance models

DE IACO, Sandra;MAGGIO, Sabrina;PALMA, Monica;POSA, Donato
2011-01-01

Abstract

In many environmental sciences, the available information concern several correlated variables observed at some locations of the domain of interest and over a certain period of time. In this context, multivariate spatial-temporal data might exhibit an spatial anisotropy and a temporal trend. Then appropriate modeling and prediction techniques for multivariate spatial-temporal data are necessary. In this paper, a case study with an anisotropic space-time coregionalization model is discussed. Some critical steps of the fitting procedure are highlighted
2011
9783200025660
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/363612
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact