Given a sequence of real numbers, we consider its subsequences converging to possibly different limits and associate to each of them an index of convergence which depends on the density of the associated subsequences. This index turns out to be useful for a detailed description of some phenomena in interpolation theory at points of discontinuity of the first kind. In particular we give some applications to Lagrange operators on Chebyshev nodes of the first and second kind and Shepard operators.

On the interpolation of discontinuous functions

CAMPITI, Michele;MAZZONE, GIUSY;TACELLI, CRISTIAN
2012-01-01

Abstract

Given a sequence of real numbers, we consider its subsequences converging to possibly different limits and associate to each of them an index of convergence which depends on the density of the associated subsequences. This index turns out to be useful for a detailed description of some phenomena in interpolation theory at points of discontinuity of the first kind. In particular we give some applications to Lagrange operators on Chebyshev nodes of the first and second kind and Shepard operators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/363716
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact