Residual stresses develop during most manufacturing processes involving material deformation, heat treatment, machining or processing operations that transform the shape or change the properties of a material. They have a not negligible effect on the material strength, especially on fatigue. For this reason, it is important that some knowledge of the internal stress state can be deduced either from measurements or from modelling predictions. The object of this paper is forecasting the modification and the evolution that a residual stress field, originated by welding, suffers after chip-forming machining, such as milling and cutting. Numerical results have been critically compared to experimental measurements and show the potentiality but also the limitations of numerical techniques.
On the evolution of welding residual stress after milling and cutting machining
DATTOMA, Vito;DE GIORGI, Marta;NOBILE, RICCARDO
2006-01-01
Abstract
Residual stresses develop during most manufacturing processes involving material deformation, heat treatment, machining or processing operations that transform the shape or change the properties of a material. They have a not negligible effect on the material strength, especially on fatigue. For this reason, it is important that some knowledge of the internal stress state can be deduced either from measurements or from modelling predictions. The object of this paper is forecasting the modification and the evolution that a residual stress field, originated by welding, suffers after chip-forming machining, such as milling and cutting. Numerical results have been critically compared to experimental measurements and show the potentiality but also the limitations of numerical techniques.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.