This paper addresses the identical parallel machine lot-sizing and scheduling problem with sequence-dependent set-up costs and uncertain processing times. The evolution of the uncertain parameters is modelled by means of a scenario tree, giving rise to a multistage stochastic mixed-integer program. Fix-and-relax procedures, exploiting the specific structure of the problem, are developed and compared. Computational results on a large set of randomly generated instances show that the gap between the best heuristic solutions and the lower bounds provided by a truncated branch-and-bound never exceeds 3%.

Scenario-based planning for lot-sizing and scheduling with uncertain processing times

GHIANI, GIANPAOLO;GUERRIERO, Emanuela;GRIECO, Antonio Domenico
2006-01-01

Abstract

This paper addresses the identical parallel machine lot-sizing and scheduling problem with sequence-dependent set-up costs and uncertain processing times. The evolution of the uncertain parameters is modelled by means of a scenario tree, giving rise to a multistage stochastic mixed-integer program. Fix-and-relax procedures, exploiting the specific structure of the problem, are developed and compared. Computational results on a large set of randomly generated instances show that the gap between the best heuristic solutions and the lower bounds provided by a truncated branch-and-bound never exceeds 3%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/365245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact