A result by Mead and Papanicolaou is proved without the assumption of absolute continuity and without the use of maximum entropy; if $\mu_n$ is any probability distribution that solves the truncated moment problem, viz. that satisfies teh moment constraints up to order $k=n$, then the sequence $(\,mu_n)$ converges weakly to $\mu$ the unique solution of the Hausdorff moment problem.

Vague Convergence in the Truncated Moment Problem

SEMPI, Carlo
1991-01-01

Abstract

A result by Mead and Papanicolaou is proved without the assumption of absolute continuity and without the use of maximum entropy; if $\mu_n$ is any probability distribution that solves the truncated moment problem, viz. that satisfies teh moment constraints up to order $k=n$, then the sequence $(\,mu_n)$ converges weakly to $\mu$ the unique solution of the Hausdorff moment problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/366636
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact