An investigation of the effect of creep exposure on the microstructure of a 9Cr–1Mo alloy for steam tubing was performed. The samples were machined from a tube, austenised at 1323 K for 15 min and air cooled to room temperature, followed by tempering at 1023 K for 1 h. Creep tests were performed at 848, 873, 898 and 923 K for different loading conditions. The conventional power law was used to describe the minimum creep rate dependence on applied stress; the stress exponent was found to increase when temperature decreased. Transmission electron microscopy (TEM) of the crept samples showed that during creep both subgrain and particle size increased; the statistical analysis of the dimensions of the precipitates revealed a bimodal distribution of particles that coarsen during creep exposure at testing temperatures. A linear dependence of subgrain size on the inverse of the modulus compensated stress was used to describe the softening of the dislocation substructure. A similar relationship was found to be also valid for particle carbides.
Evolution of microstructure in a modified 9Cr-1Mo steel after short term creep
CERRI, Emanuela;
1998-01-01
Abstract
An investigation of the effect of creep exposure on the microstructure of a 9Cr–1Mo alloy for steam tubing was performed. The samples were machined from a tube, austenised at 1323 K for 15 min and air cooled to room temperature, followed by tempering at 1023 K for 1 h. Creep tests were performed at 848, 873, 898 and 923 K for different loading conditions. The conventional power law was used to describe the minimum creep rate dependence on applied stress; the stress exponent was found to increase when temperature decreased. Transmission electron microscopy (TEM) of the crept samples showed that during creep both subgrain and particle size increased; the statistical analysis of the dimensions of the precipitates revealed a bimodal distribution of particles that coarsen during creep exposure at testing temperatures. A linear dependence of subgrain size on the inverse of the modulus compensated stress was used to describe the softening of the dislocation substructure. A similar relationship was found to be also valid for particle carbides.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.