A systematic analysis of a continuous version of a binomial lattice, containing a real parameter γ and covering the Toda field equation as γ→∞, is carried out in the framework of group theory. The symmetry algebra of the equation is derived. Reductions by one-dimensional and two-dimensional subalgebras of the symmetry algebra and their corresponding subgroups, yield notable field equations in lower dimensions whose solutions allow us to find exact solutions to the original equation. Some reduced equations turn out to be related to potentials of physical interest, such as the Fermi–Pasta–Ulam and the Killingbeck potentials, and others. An instantonlike approximate solution is also obtained which reproduces the Eguchi–Hanson instanton configuration for γ→∞. Furthermore, the equation under consideration is extended to n+1 dimensions. A spherically symmetric form of this equation, studied by means of the symmetry approach, provides conformally invariant classes of field equations comprising remarkable special cases. One of these (n=4) enables us to establish a connection with the Euclidean Yang–Mills equations, another appears in the context of Differential Geometry in relation to the so-called Yamabe problem. All the properties of the reduced equations are shared by the spherically symmetric generalized field equation.

Continuous approximation of binomial lattices

LEO, Rosario Antonio;SOLOMBRINO, Luigi
1999-01-01

Abstract

A systematic analysis of a continuous version of a binomial lattice, containing a real parameter γ and covering the Toda field equation as γ→∞, is carried out in the framework of group theory. The symmetry algebra of the equation is derived. Reductions by one-dimensional and two-dimensional subalgebras of the symmetry algebra and their corresponding subgroups, yield notable field equations in lower dimensions whose solutions allow us to find exact solutions to the original equation. Some reduced equations turn out to be related to potentials of physical interest, such as the Fermi–Pasta–Ulam and the Killingbeck potentials, and others. An instantonlike approximate solution is also obtained which reproduces the Eguchi–Hanson instanton configuration for γ→∞. Furthermore, the equation under consideration is extended to n+1 dimensions. A spherically symmetric form of this equation, studied by means of the symmetry approach, provides conformally invariant classes of field equations comprising remarkable special cases. One of these (n=4) enables us to establish a connection with the Euclidean Yang–Mills equations, another appears in the context of Differential Geometry in relation to the so-called Yamabe problem. All the properties of the reduced equations are shared by the spherically symmetric generalized field equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/370424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact