In this paper, entropy is presented as an alternative measure to characterize the bivariate distribution of a stationary spatial process. This non-parametric estimator attempts to quantify the concept of spatial ordering, and it provides a measure of how Gaussian the experimental bivariate distribution is. The concept of entropy is explained and the classical definition presented, along with some important results. In particular, the reader is reminded that, for a known mean and covariance, the bivariate Gaussian distribution maximizes entropy.
A Nonparametric Bivariate Entropy Estimator for Spatial Processes
POSA, Donato
1992-01-01
Abstract
In this paper, entropy is presented as an alternative measure to characterize the bivariate distribution of a stationary spatial process. This non-parametric estimator attempts to quantify the concept of spatial ordering, and it provides a measure of how Gaussian the experimental bivariate distribution is. The concept of entropy is explained and the classical definition presented, along with some important results. In particular, the reader is reminded that, for a known mean and covariance, the bivariate Gaussian distribution maximizes entropy.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.