The paper presents the experience of a working group within the RILEM Technical Committee 223-MSC ‘Masonry Strengthening with Composite materials’, aimed at developing a standardized, reliable procedure for characterizing the bonding mechanism of masonry elements strengthened with composite materials under shear actions. Twelve laboratories from European universities and research centers were involved. Two different set-ups were compared, for single-lap and double-lap shear tests (the latter in two versions). Four kinds of fiber fabrics, i.e., glass, carbon, basalt and steel, were applied with epoxy resins (wet lay-up system) to clay brick units, for a total of 280 monotonic tests. The results provided information regarding the response of externally bonded-to-brick composites in terms of observed failure mechanisms, load capacity, effective transfer length, and bond shear stress–slip behavior.
Round robin test for composite-to-brick shear bond characterization
LEONE, Marianovella;MICELLI, Francesco;
2012-01-01
Abstract
The paper presents the experience of a working group within the RILEM Technical Committee 223-MSC ‘Masonry Strengthening with Composite materials’, aimed at developing a standardized, reliable procedure for characterizing the bonding mechanism of masonry elements strengthened with composite materials under shear actions. Twelve laboratories from European universities and research centers were involved. Two different set-ups were compared, for single-lap and double-lap shear tests (the latter in two versions). Four kinds of fiber fabrics, i.e., glass, carbon, basalt and steel, were applied with epoxy resins (wet lay-up system) to clay brick units, for a total of 280 monotonic tests. The results provided information regarding the response of externally bonded-to-brick composites in terms of observed failure mechanisms, load capacity, effective transfer length, and bond shear stress–slip behavior.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.